WO2015156295A1 - 熱可塑性ポリウレタン系樹脂組成物、導体被覆材及びこれらの製造方法 - Google Patents

熱可塑性ポリウレタン系樹脂組成物、導体被覆材及びこれらの製造方法 Download PDF

Info

Publication number
WO2015156295A1
WO2015156295A1 PCT/JP2015/060890 JP2015060890W WO2015156295A1 WO 2015156295 A1 WO2015156295 A1 WO 2015156295A1 JP 2015060890 W JP2015060890 W JP 2015060890W WO 2015156295 A1 WO2015156295 A1 WO 2015156295A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
less
core
shell
Prior art date
Application number
PCT/JP2015/060890
Other languages
English (en)
French (fr)
Inventor
亜季 大嶽
秀行 初野
高橋 和也
敦成 河合
佳明 松岡
Original Assignee
株式会社カネカ
昭和化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ, 昭和化成工業株式会社 filed Critical 株式会社カネカ
Priority to JP2016512747A priority Critical patent/JP6847659B2/ja
Priority to CN201580018205.5A priority patent/CN106255724B/zh
Priority to EP15776540.5A priority patent/EP3130641B1/en
Priority to US15/302,795 priority patent/US10311995B2/en
Publication of WO2015156295A1 publication Critical patent/WO2015156295A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/302Polyurethanes or polythiourethanes; Polyurea or polythiourea
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/62Insulating-layers or insulating-films on metal bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/447Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from acrylic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer

Definitions

  • the present invention relates to a thermoplastic polyurethane resin composition, a conductor coating material, and a method for producing them, and more particularly to an improvement in flame retardancy of a thermoplastic polyurethane resin composition and an improvement in the properties of a conductor coating material.
  • Patent Document 1 includes a thermoplastic polyurethane elastomer, an ethylene polymer and / or an ethylene copolymer as main components, two specific types of (poly) phosphate compounds, and a specific phosphoric acid.
  • a flame retardant thermoplastic resin composition containing an ester compound is described.
  • Patent Document 2 describes a flame-retardant synthetic resin leather in which a thermoplastic polyurethane-based resin layer is provided on at least one surface of a base fabric that has been flame-retarded with a nitrogen-phosphorous flame retardant.
  • a thermoplastic polyurethane resin can be used alone, but it is preferable to use it together with an acrylic soft resin.
  • the acrylic soft resin is a multilayer structure polymer, that is, 2 Paragraph 003 describes that a particulate polymer in which at least one kind of acrylic polymer forms a core-shell multilayer structure is preferable.
  • thermoplastic polyurethane-based resin layer is provided on at least one surface of a base fabric that is flame-retardant processed using a nitrogen-phosphorous flame retardant as a part of the flame-retardant synthetic resin leather. It is provided.
  • the outer layer is made of thermoplastic polyurethane ( TPU)
  • TPU thermoplastic polyurethane
  • a resin composition comprising a resin composition containing 30 parts by mass or more of a flame retardant with respect to 100 parts by mass, and the inner layer comprising an ethylene vinyl acetate copolymer (EVA) having an acetic acid component (VA) content of 33% or more.
  • EVA ethylene vinyl acetate copolymer
  • VA acetic acid component
  • thermoplastic polyurethane resin compositions are not always sufficient. Further, the characteristics of the conventional conductor coating material are not always sufficient.
  • the present invention has been made in view of the above problems, and provides a thermoplastic polyurethane resin composition that achieves excellent flame retardancy, a conductor coating material having excellent characteristics, and a method for producing these.
  • a thermoplastic polyurethane resin composition that achieves excellent flame retardancy, a conductor coating material having excellent characteristics, and a method for producing these.
  • thermoplastic polyurethane-based resin composition for solving the above-described problems includes a thermoplastic polyurethane-based resin of 58.1 parts by weight or more and 73.9 parts by weight or less, and 26.1 parts by weight. As described above, it comprises 100 parts by weight of a resin component composed of 41.9 parts by weight or less of core-shell polymer particles, and 42 parts by weight or more and 87 parts by weight or less of a phosphate ester flame retardant. ADVANTAGE OF THE INVENTION According to this invention, the thermoplastic polyurethane-type resin composition which achieves the outstanding flame retardance can be provided.
  • the core-shell polymer particles are composed of one or more core layers and one or more shell layers, and the core layer is a polymer having a glass transition temperature of less than 40 ° C. Polymerization of a raw material comprising at least one selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds, and a polyfunctional monomer.
  • the core-shell polymer particles include the crosslinked shell layer composed of a copolymer having a glass transition temperature of 40 ° C. or higher.
  • the crosslinking degree of the crosslinked shell layer is 0.05% or more, 0.42% or less Core shell polymer particles; and (b) 50.1 wt% or more and 89.4 wt% or less of the core layer with respect to a total of 100 wt% of the core layer and the shell layer, Core-shell polymer particles having a degree of cross-linking of more than 0.42% and not more than 0.45%; and (c) 50.1% by weight or more with respect to 100% by weight in total of the core layer and the shell layer Core-shell polymer particles comprising 90.4% by weight or less of the core layer, wherein the crosslinked shell layer has a degree of crosslinking of more than 0.45% and 0.50% or less; and (d) the core layer and the shell 40.1 wt% or more and 90.4 wt% or less of the core layer with respect to 100
  • the core-shell polymer particles may include at least the (a).
  • the core-shell polymer particles may include at least the (b).
  • the core-shell polymer particles may include at least the (c).
  • the core-shell polymer particles may contain at least the (d).
  • the copolymer constituting the crosslinked shell layer is one or more selected from the group consisting of the (meth) acrylic acid ester and the vinylcyan compound, and the polyfunctional monomer. These may be a copolymer of an unsaturated monomer copolymerizable therewith.
  • thermoplastic polyurethane resin composition comprises 59.1 parts by weight or more and 73.9 parts by weight or less of the thermoplastic polyurethane resin, and 26.1 parts by weight or more and 40.9 parts by weight. 100 parts by weight of the resin component composed of the following core-shell polymer particles and 42 parts by weight or more and 87 parts by weight or less of the phosphate ester flame retardant may be included.
  • the thermoplastic polyurethane resin composition comprises 58.1 parts by weight or more and 73.9 parts by weight or less of a thermoplastic polyurethane resin, and 26.1 parts by weight or more and 41.9 parts by weight or less of a core-shell polymer. And 100 parts by weight of a resin component and 42 parts by weight or more and 87 parts by weight or less of a phosphate ester flame retardant, wherein the core-shell polymer particles comprise one or more core layers and one or more shells. It is good also as including the said core layer of 57.1 weight% or more and 82.0 weight% or less with respect to a total of 100 weight% of the said core layer and the said shell layer.
  • the core-shell polymer particles are compliant with JIS K 6253-3: 2012, using a type A durometer as a testing machine, without using an automatic timer device, and having a thickness of 1.0 mm or more, A laminate obtained by stacking six sheets of 1.5 mm or less (30 mm ⁇ 40 mm) was used as a test piece, and the test piece was conditioned at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours or more.
  • the Shore A hardness measured by a method of reading a measurement value 10 seconds after the pressure plate is brought into contact with the test piece at a temperature of 50 ° C. and a relative humidity of 50% may be 81 or more and 100 or less. .
  • the one or more shell layers are polymers obtained by polymerization of a raw material containing at least one selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds, and have a glass transition temperature. May be composed of a polymer of 40 ° C. or higher.
  • the thermoplastic polyurethane resin composition comprises 58.6 parts by weight or more and 73.4 parts by weight or less of the thermoplastic polyurethane resin, and 26.6 parts by weight or more and 41.4 parts by weight or less. 100 parts by weight of the resin component composed of the core-shell polymer particles and 41 parts by weight or more and 87 parts by weight or less of the phosphoric ester-based flame retardant may be included.
  • the polymer constituting the one or more shell layers may be one or more selected from the group consisting of the (meth) acrylic acid ester and the vinylcyan compound, and a copolymerizable with the polymer. It may be a copolymer with a saturated monomer.
  • thermoplastic polyurethane resin composition may be a thermoplastic polyurethane resin composition for conductor coating materials.
  • thermoplastic polyurethane resin composition for solving the above-described problems includes a thermoplastic polyurethane resin of 58.1 parts by weight or more and 73.9 parts by weight or less; Mixing 100 parts by weight of a resin component composed of 1 part by weight or more and 41.9 parts by weight or less of core-shell polymer particles with 42 parts by weight or more and 87 parts by weight or less of a phosphate ester flame retardant. It is characterized by including. ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the thermoplastic polyurethane-type resin composition which achieves the outstanding flame retardance can be provided.
  • the conductor coating material according to an embodiment of the present invention for solving the above-mentioned problems is a thermoplastic polyurethane-based resin of 58.1 parts by weight or more and 73.9 parts by weight or less, 26.1 parts by weight or more, 41. 100 parts by weight of a resin component composed of 9 parts by weight or less of core-shell polymer particles, and 42 parts by weight or more and 87 parts by weight or less of a phosphoric ester-based flame retardant. According to the present invention, a conductor covering material having excellent characteristics can be provided.
  • the core-shell polymer particles are composed of one or more core layers and one or more shell layers, and the core layer is composed of a polymer having a glass transition temperature of less than 40 ° C.
  • the shell layer includes an outermost core layer, and the shell layer is a copolymer obtained by polymerization of a raw material containing at least one selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds and a polyfunctional monomer.
  • a crosslinked shell layer composed of a copolymer having a glass transition temperature of 40 ° C.
  • the core-shell polymer particles include the following (a) to (d): (a) the core layer and the core layer 50.1% by weight or more and 88.9% by weight or less of the core layer with respect to a total of 100% by weight with the shell layer, and the crosslinking degree of the crosslinked shell layer is 0.05% or more and 0.42% Core-shell polymer particles that are (B) including 50.1% by weight or more and 89.4% by weight or less of the core layer with respect to a total of 100% by weight of the core layer and the shell layer, and the crosslinking degree of the crosslinked shell layer is Core-shell polymer particles that are more than 0.42% and 0.45% or less; (c) 50.1% by weight or more and 90.4% by weight with respect to a total of 100% by weight of the core layer and the shell layer % Of the core layer, and the degree of cross-linking of the cross-linked shell layer is more than 0.45% and 0.50% or less; and (d) a total of 100 of the core layer and the core layer 50
  • a core-shell polymer comprising 40.1 wt% or more and 90.4 wt% or less of the core layer with respect to wt%, wherein the crosslinked shell layer has a degree of crosslinking of more than 0.50% and 5.00% or less It is good also as being 1 or more types selected from the group which consists of particle
  • the core-shell polymer particles may include at least the (a).
  • the core-shell polymer particles may include at least the (b).
  • the core-shell polymer particles may include at least the (c).
  • the core-shell polymer particles may contain at least the (d).
  • the copolymer constituting the crosslinked shell layer is one or more selected from the group consisting of the (meth) acrylic acid ester and the vinylcyan compound, and the polyfunctional monomer. These may be a copolymer of an unsaturated monomer copolymerizable therewith.
  • the conductor coating material is composed of 59.1 parts by weight or more and 73.9 parts by weight or less of the thermoplastic polyurethane resin, and 26.1 parts by weight or more and 40.9 parts by weight or less of the core shell. 100 parts by weight of the resin component composed of polymer particles and 42 parts by weight or more and 87 parts by weight or less of the phosphate ester flame retardant may be included.
  • the conductor coating material comprises 58.1 parts by weight or more and 73.9 parts by weight or less of a thermoplastic polyurethane resin, and 26.1 parts by weight or more and 41.9 parts by weight or less of core-shell polymer particles.
  • 100 parts by weight of a resin component and 42 parts by weight or more and 87 parts by weight or less of a phosphate ester flame retardant, and the core-shell polymer particles are composed of one or more core layers and one or more shell layers.
  • the core layer may include 57.1% by weight or more and 82.0% by weight or less with respect to 100% by weight in total of the core layer and the shell layer.
  • the core-shell polymer particles are compliant with JIS K 6253-3: 2012, using a type A durometer as a testing machine, without using an automatic timer device, and having a thickness of 1.0 mm or more, A laminate obtained by stacking six sheets of 1.5 mm or less (30 mm ⁇ 40 mm) was used as a test piece, and the test piece was conditioned at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours or more.
  • the Shore A hardness measured by a method of reading a measurement value 10 seconds after the pressure plate is brought into contact with the test piece at a temperature of 50 ° C. and a relative humidity of 50% may be 81 or more and 100 or less. .
  • the one or more shell layers are polymers obtained by polymerization of a raw material containing at least one selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds, and have a glass transition temperature. May be composed of a polymer of 40 ° C. or higher.
  • the conductor coating material includes 58.6 parts by weight or more and 73.4 parts by weight or less of the thermoplastic polyurethane resin, and 26.6 parts by weight or more and 41.4 parts by weight or less of the core shell weight. 100 parts by weight of the resin component composed of coalesced particles and 41 parts by weight or more and 87 parts by weight or less of the phosphate ester flame retardant may be included.
  • the polymer constituting the one or more shell layers may be one or more selected from the group consisting of the (meth) acrylic acid ester and the vinylcyan compound, and a copolymerizable with the polymer. It may be a copolymer with a saturated monomer.
  • the manufacturing method of the conductor coating material according to an embodiment of the present invention for solving the above-described problems includes a thermoplastic polyurethane resin of 58.1 parts by weight or more and 73.9 parts by weight or less, and 26.1 parts by weight or more.
  • a resin raw material comprising 100 parts by weight of a resin component composed of 41.9 parts by weight or less of core-shell polymer particles and 42 parts by weight or more and 87 parts by weight or less of a phosphate ester flame retardant. It is characterized by including.
  • ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the conductor coating
  • thermoplastic polyurethane resin composition that achieves excellent flame retardancy, a conductor coating material having excellent characteristics, and a method for producing them.
  • thermoplastic polyurethane resin composition and conductor coating material in Example 1 according to one embodiment of the present invention (thermoplastic polyurethane resin, phosphate ester flame retardant and parts by weight of core-shell polymer particles) and flame retardant It is explanatory drawing which shows property.
  • Blending of thermoplastic polyurethane resin composition and conductor coating material body in Example 1 according to one embodiment of the present invention core-shell polymer particles with respect to 100 parts by weight in total of thermoplastic polyurethane resin and phosphate ester flame retardant It is explanatory drawing which shows a weight part) and a flame retardance.
  • covering material in Example 2 which concern on one Embodiment of this invention.
  • covering material in Example 3 which concerns on one Embodiment of this invention, a flame retardance, and Shore A hardness.
  • covering material in Example 4 which concerns on one Embodiment of this invention.
  • thermoplastic polyurethane-type resin composition in Example 5 which concerns on one Embodiment of this invention, and a conductor coating material.
  • blending and flame retardance of the thermoplastic polyurethane-type resin composition in Example 6 which concerns on one Embodiment of this invention, and a conductor coating material.
  • covering material in Example 7 which concern on one Embodiment of this invention.
  • thermoplastic polyurethane-type resin composition in Example 8 which concerns on one Embodiment of this invention, and a conductor coating
  • flame retardance and Shore A hardness of the thermoplastic polyurethane-type resin composition in Example 9 which concerns on one Embodiment of this invention, and a conductor coating material.
  • covering material in Example 10 which concern on one Embodiment of this invention.
  • covering material in Example 11 which concern on one Embodiment of this invention.
  • the conductor covering material (this covering material) according to the present embodiment is a member that covers a conductor.
  • covering material will not be restricted especially if it is a member for conducting electricity.
  • the conductor may be a metal conductor, for example.
  • the metal constituting the metal conductor is not particularly limited as long as it conducts electricity.
  • the group consisting of copper, annealed copper, nickel-plated annealed copper, tin-plated annealed copper, silver, aluminum, gold, iron, tungsten, molybdenum and chromium It is good also as being 1 or more types selected more.
  • the conductor may be a conducting wire. In this case, the conductor may be a metal conductor.
  • FIG. 1, FIG. 2, FIG. 3 and FIG. 4 are explanatory views showing cross sections of examples of the present covering material.
  • the covering material is a conductor covering material that covers a conductor. More specifically, in the example shown in FIGS. 1 to 4, the covering material is a conductor covering material for the electric wire 1 or the cable 2.
  • FIG. 1 shows an electric wire 1 including a conductor (conductive wire) 10 and a covering material 20 that covers the conductor 10.
  • FIG. 2 shows an electric wire 1 including a plurality of conductors 10a, 10b, and 10c and a covering material 20 that collectively covers the plurality of conductors 10a, 10b, and 10c.
  • the covering material may be a covering material 20 for the electric wire 1 as shown in FIGS. 1 and 2.
  • the electric wire 1 may be a so-called insulated wire, and the covering material 20 may be an insulating covering material for the insulated wire.
  • covers conducting wire as shown in FIG.1 and FIG.2, the number of the said conducting wires coat
  • a conductor (conductive wire) 10 a first covering material 20 that covers the conductor 10
  • a second covering material 30 that covers the first covering material 20 (the first covering material 20).
  • 2 shows a cable 2 including a second covering material 30) covering the conductor 10 via a wire.
  • the cable 2 may include the electric wire 1 including the conductor 10 and the first covering material 20 and the second covering material 20 that covers the electric wire 1.
  • the covering material may be the covering materials 20 and 30 of the cable 2 as shown in FIG. That is, the present covering material may be the first covering material 20 and / or the second covering material 30 shown in FIG. 3, and preferably the second covering material 30.
  • the electric wire 1 may be an insulated wire
  • the first covering material 20 may be an insulating covering material for the insulated wire.
  • the second covering material 30 may be a protective covering material (so-called sheath) that covers the electric wire 1.
  • the third covering material 50 covering the second covering material 40 (the plurality of conductors 10a, 10b, 10c via the plurality of first covering materials 20a, 20b, 20c and the second covering material 40) 3 shows a cable 2 including a third covering material 50) covering the wire.
  • the cable 2 includes the electric wire 1a including the conductor 10a and the first covering material 20a, the electric wire 1b including the conductor 10b and the first covering material 20b, the conductor 10c, and the first covering material 20c. It is good also as including the electric wire 1c to contain and the 2nd coating
  • the present covering material may be the covering materials 20a, 20b, 20c, 40, 50 of the cable 2 as shown in FIG. That is, the present covering material may be one or more selected from the group consisting of the first covering materials 20a, 20b, 20c, the second covering material 40, and the third covering material 50 shown in FIG. Good.
  • covering material is a coating
  • the plurality of electric wires 1a, 1b, 1c may be insulated wires, and the first covering material 20 may be an insulating covering material for the insulated wires.
  • the second covering material 40 and the third covering material 50 may be protective covering materials (so-called sheaths) that cover the electric wires 1.
  • covering material is a coating
  • the said electric wire and cable are the electric wire or cable for electric power supply, the electric wire or cable for communication, and the electric wire or cable for electric equipment (for example, it may be selected from the group consisting of one or more selected from the group consisting of wiring, plugs and connectors of household electrical appliance parts, electrical parts, electronic parts or automobile parts.
  • the coating material comprises a thermoplastic polyurethane resin (referred to herein as “TPU”), a phosphate ester flame retardant (referred to herein as “PE flame retardant”), and core-shell polymer particles (present In the specification, it is referred to as “CS particles”).
  • TPU thermoplastic polyurethane resin
  • PE flame retardant phosphate ester flame retardant
  • CS particles core-shell polymer particles
  • the present covering material is manufactured by a method including molding a resin raw material containing TPU, PE flame retardant, and CS particles.
  • the resin raw material used for manufacturing this coating material is a resin raw material for forming a conductor coating material.
  • thermoplastic polyurethane resin composition (this composition) according to the present embodiment includes a thermoplastic polyurethane resin (TPU), a phosphate ester flame retardant (PE flame retardant), and core-shell polymer particles (CS particles). Including.
  • the above-mentioned covering material is manufactured using the present composition as a resin raw material. That is, the composition may be a thermoplastic polyurethane resin composition for a conductor coating material. Therefore, the present embodiment includes the use of the present composition in the production of a conductor coating, the method of using the present composition for the production of a conductor coating, and the method of producing a conductor coating using the composition ( More specifically, a method for producing a conductor coating material by molding the composition is included.
  • thermoplastic polyurethane resin composition containing TPU and PE flame retardant and the conductor coating material As a result of intensive studies on the technical means for improving the flame retardancy of the thermoplastic polyurethane resin composition containing TPU and PE flame retardant and the conductor coating material, however, it discovered uniquely giving the said flame retardant to the said composition and conductor coating
  • the present composition and the present covering material are the present composition and conductor covering material containing TPU and PE flame retardant, and further contain CS particles as a flame retardant. That is, CS particles are a component that exhibits flame retardancy in the present composition and the present coating material. For this reason, this embodiment contains the method of using CS particle
  • the inventors of the present invention surprisingly include TPU and PE flame retardants as a result of intensive studies on technical means for improving the flame retardancy of thermoplastic polyurethane resin compositions and conductor coating materials.
  • TPU and PE flame retardants As a result of intensive studies on technical means for improving the flame retardancy of thermoplastic polyurethane resin compositions and conductor coating materials.
  • CS particles By adding CS particles in a specific range to the thermoplastic polyurethane-based resin composition and conductor coating material, it was uniquely found that particularly high flame retardancy can be achieved, and the present invention has been completed. .
  • the present composition and the present coating material are 100 parts by weight composed of 58.1 parts by weight or more and 73.9 parts by weight or less of TPU and 26.1 parts by weight or more and 41.9 parts by weight or less of CS particles. It is good also as including 42 weight part or more and 87 weight part or less PE flame retardant.
  • the present composition and the present covering material may include a flame retardant composed of 21.9 parts by weight or more and 40.7 parts by weight or less of CS particles with respect to a total of 100 parts by weight of TPU and PE flame retardant.
  • a flame retardant composed of 21.9 parts by weight or more and 40.7 parts by weight or less of CS particles with respect to a total of 100 parts by weight of TPU and PE flame retardant.
  • the present covering material is 23.32 parts by weight based on 100 parts by weight of TPU and 100 parts by weight in total of 133.2 parts by weight or less of PE flame retardant and TPU and PE flame retardant. It is good also as including the flame retardant which consists of 0 to 40.7 weight part CS particle
  • the present composition and the present coating material comprise 100 parts by weight comprising 59.1 parts by weight or more and 73.9 parts by weight or less of TPU and 26.1 parts by weight or more and 40.9 parts by weight or less of CS particles. It is good also as including 42 weight part or more and 87 weight part or less PE flame retardant. In this case, the present composition and the present coating material exhibit extremely excellent flame retardancy.
  • the resin component 100 parts by weight preferably contains 59.2 parts by weight or more and 73.7 parts by weight or less TPU, and contains 59.5 parts by weight or more and 73.5 parts by weight or less TPU. More preferred. In these cases, this composition and this coating
  • 100 parts by weight of the resin component preferably includes 26.2 parts by weight or more and 40.7 parts by weight or less of CS particles, and includes 26.5 parts by weight or more and 40.5 parts by weight or less of CS particles. It is more preferable. In these cases, this composition and this coating
  • 100 parts by weight of the resin component is composed of 59.2 parts by weight or more and 73.7 parts by weight or less of TPU and 26.2 parts by weight or more and 40.7 parts by weight or less of CS particles. More preferably, it is comprised of 59.5 parts by weight or more and 73.5 parts by weight or less of TPU and 26.5 parts by weight or more and 40.5 parts by weight or less of CS particles. In these cases, this composition and this coating
  • the present composition and the present coating material preferably contain 100 parts by weight of the above resin component, and 42 parts by weight or more and 87 parts by weight or less of PE flame retardant, and 43 parts by weight or more and 85 parts by weight or less of PE flame retardant. More preferably, a flame retardant is included. In these cases, this composition and this coating
  • the present composition and the present coating material comprise 59.2 parts by weight or more and 73.7 parts by weight or less of TPU and 26.2 parts by weight or more and 40.7 parts by weight or less of CS particles. It is good also as including 100 weight part resin components and 42 weight part or more and 87 weight part or less PE flame retardant. In this case, this composition and this coating
  • the present composition and the present coating material are 100 parts by weight composed of 59.5 parts by weight or more and 73.5 parts by weight or less of TPU and 26.5 parts by weight or more and 40.5 parts by weight or less of CS particles. And 43 parts by weight or more and 85 parts by weight or less of PE flame retardant. In this case, the present composition and the present coating material exhibit particularly excellent flame retardancy.
  • covering material may contain another component other than TPU, CS particle
  • the “resin component” is composed of TPU and CS particles.
  • the present composition and the present covering material may contain a resin in addition to the “resin component”. However, it is preferable that this composition and this coating
  • the TPU contained in the present composition and the present coating material is not particularly limited as long as it is a polyurethane resin having thermoplasticity synthesized by reaction of polyisocyanate and polyol.
  • the type of TPU is not particularly limited, but may be one or more selected from the group consisting of polyester-based TPU, polyether-based TPU, and polycarbonate-based TPU, and more specifically, adipate-based TPU, caprolactone It may be one or more selected from the group consisting of a system TPU, a polyether TPU, and a polycarbonate TPU.
  • polyester-based TPU is most preferable from the point described later, and then polycarbonate-based TPU is preferable.
  • the present composition and the present covering material may include a polyester-based TPU.
  • covering material contain polyester type TPU (Adipate type
  • the present covering material maintains excellent tensile elongation characteristics even after being heated at a predetermined temperature for a predetermined time (for example, at 136 ° C. for 168 hours).
  • a predetermined temperature for a predetermined time for example, at 136 ° C. for 168 hours
  • the test piece of the present composition containing a polyester-based TPU and the present covering material are polyethers.
  • the heat resistance of the present composition and the present covering material including the polyester-based TPU is superior to that of the present composition and the present covering material including the polycarbonate-based TPU.
  • the present composition and the present covering material include an adipate-based TPU
  • the present composition and the present covering material have extremely high flame retardancy and the above-described excellent heat resistance.
  • the processability of the present resin composition including polyester-based TPU and the resin raw material of the present covering material is determined from the present composition including polycarbonate-based TPU, the present resin raw material and the present composition including polyether-based TPU, and the present resin raw material. Are better.
  • the present composition and the present covering material may contain a polycarbonate-based TPU.
  • covering material contain polycarbonate type TPU, this composition and this coating
  • the test piece of the present composition containing a polycarbonate-based TPU and the present covering material are polyethers. Compared to the test piece of the present composition containing the system TPU and the present coating material.
  • the present composition and the present covering material may include a polyether-based TPU. Even when this composition and this coating
  • TPU may be a TPU having a flow starting point of 155 ° C. or higher.
  • the flow starting point of TPU is not particularly limited as long as it is 155 ° C. or higher, but may be, for example, 160 ° C. or higher, preferably 170 ° C. or higher, more preferably 175 ° C. or higher, 180 It is particularly preferable that the temperature is not lower than ° C.
  • the flow starting point of TPU is 175 ° C. or higher, particularly when it is 180 ° C. or higher, the present composition and the present coating material containing the TPU have excellent heat resistance in addition to excellent flame retardancy. Become.
  • the present composition and the present coating material may include a polyester-based TPU having a flow starting point of 155 ° C. or higher, 160 ° C. or higher, 170 ° C. or higher, 175 ° C. or higher, or 180 ° C. or higher. It may include an adipate-based TPU having a flow starting point of 160 ° C. or higher, 170 ° C. or higher, 175 ° C. or higher, or 180 ° C. or higher, and 155 ° C. or higher, 160 ° C. or higher, 170 ° C. or higher, 175 ° C. or higher, or 180 ° C. or higher.
  • It may include a caprolactone TPU having a flow starting point of 155 ° C. or higher, 160 ° C. or higher, 170 ° C. or higher, 175 ° C. or higher, or 180 ° C. or higher. 155 ° C or higher, 160 ° C or higher, 170 ° C or higher, 175 ° C or higher, or 180 ° C or higher. It may include Rieteru system TPU.
  • the amount of TPU contained in the present composition and the present covering material is not particularly limited, but the present composition and the present covering material may include, for example, 30 to 60% by weight of TPU, and 30 to 55% by weight. Of TPU, and more preferably 35 to 55% by weight of TPU.
  • CS particles are flame retardant in a thermoplastic polyurethane resin composition and conductor coating material containing TPU, and in a thermoplastic polyurethane resin composition and conductor coating material containing TPU and PE flame retardant.
  • the flame retardant test is performed using a test piece (125 mm ⁇ 13 mm ⁇ 3 mm) prepared by punching a sheet manufactured from a thermoplastic polyurethane resin composition or a sheet of a conductor coating material with a punching blade, and a UL combustion tester. Using a certain HVUL tester (manufactured by Atlas Co., Ltd.), the test is performed as follows. (1) First, the test piece is suspended vertically by fixing the upper end of the test piece to the clamp so that one end in the longitudinal direction of the test piece is on the upper side and the other end is on the lower side.
  • CS particles are polymer particles having a core-shell structure. That is, the CS particles include one or more core layers and one or more shell layers. When the CS particles include two or more core layers, the polymers constituting the two or more core layers may have different compositions. Further, when the CS particles include two or more shell layers, the polymers constituting the two or more shell layers may have different compositions.
  • the volume average particle diameter of primary particles of CS particles may be, for example, 10 to 10,000 nm, and preferably 50 to 1000 nm.
  • the volume average particle diameter of primary particles of CS particles is the volume average particle diameter of latex of the CS particles.
  • the volume average particle diameter of primary particles of CS particles is measured by a laser diffraction method, and is measured using, for example, MICROTRAC UPA150 (registered trademark) (manufactured by Nikkiso Co., Ltd.).
  • the CS particles are produced by an emulsion polymerization method, a dispersion polymerization method, a micro suspension polymerization method or a suspension polymerization method, preferably by an emulsion polymerization method.
  • the core layer is particles (polymer particles) composed of a polymer.
  • the core layer may be particles composed of a crosslinked polymer.
  • the core layer may be particles composed of a crosslinked rubber.
  • the CS particles include one or more core layers. That is, the CS particle may include one core layer or two or more core layers, but includes the one core layer (the CS particles include one or more shell layers, 1 Preferably, it is composed of one core layer or one shell layer and one core layer).
  • the core layer includes an outermost core layer composed of a polymer having a glass transition temperature (Tg) of less than 40 ° C. That is, when the CS particles include one core layer (the core layer of CS particles is composed of one core layer), the one core layer is the outermost core layer and has a glass transition temperature. Is composed of a polymer of less than 40 ° C.
  • the two or more core layers cover one innermost core layer particle constituting the innermost layer of the CS particles and the innermost core layer particle 1. It is good also as comprising from the above covering core layer.
  • the two core layers include one innermost core layer particle constituting the innermost layer of the CS particle and one coating covering the innermost core layer particle. It consists of a core layer.
  • one coated core layer that coats the innermost core layer particles is the outermost core layer.
  • the three or more core layers cover one innermost core layer particle constituting the innermost layer of the CS particle and the innermost core layer particle 2. It is comprised from the above coating
  • the outermost coated core layer in the radial direction of the CS particles is the outermost core layer. That is, CS particles are composed of one innermost core layer particle, a first coated core layer that covers the innermost core layer particle, and a second coated core layer that covers the first coated core layer.
  • the second covered core layer is the outermost core layer.
  • the two or more core layers may include one or more core layers composed of a polymer having a glass transition temperature of 40 ° C. or higher in addition to the outermost core layer. That is, the two or more core layers include an outermost core layer composed of a polymer having a glass transition temperature of less than 40 ° C, one or more core layers composed of a polymer having a glass transition temperature of 40 ° C or more, and / or Or it is good also as comprising from 1 or more core layers comprised from the polymer whose glass transition temperature is less than 40 degreeC.
  • the two or more core layers may include two or more core layer particles. That is, the two or more core layers may be composed of two or more core layer particles, and the two or more core layer particles and one or more coated core layers that coat the two or more core layer particles. It may be configured. When two or more core layers are composed of two or more core layer particles, the two or more core layer particles are outermost core layers. When two or more core layers are composed of two or more core layer particles and one or more coated core layers covering the two or more core layer particles, among the one or more coated core layers, The core layer constituting the outermost layer is the outermost core layer. However, the CS particles preferably include one innermost core layer particle, not two or more.
  • the glass transition temperature of the outermost core layer is preferably 35 ° C. or lower, and particularly preferably 23 ° C. or lower. That is, the core layer may be particles composed of a polymer having a glass transition temperature of 23 ° C. or lower.
  • the CS particles may include one core layer composed of a polymer having a glass transition temperature of 23 ° C. or lower. In this case, the CS particles are composed of one core layer composed of a polymer having a glass transition temperature of 23 ° C. or lower and one shell layer composed of a polymer having a glass transition temperature of 40 ° C. or higher. It is preferable.
  • the core layer may be particles composed of a crosslinked polymer having a glass transition temperature of 23 ° C. or less, or may be particles composed of a crosslinked rubber having a glass transition temperature of 23 ° C. or less.
  • the glass transition temperature of the core layer is preferably 0 ° C. or lower, for example, and more preferably ⁇ 23 ° C. or lower. That is, the core layer preferably includes an outermost core layer composed of a polymer having a glass transition temperature of 0 ° C. or less, and the outermost core layer composed of a polymer having a glass transition temperature of ⁇ 23 ° C. or less. More preferably. In this case, the core layer preferably includes one core layer composed of a polymer having a glass transition temperature of 0 ° C. or less, and one core layer composed of a polymer having a glass transition temperature of ⁇ 23 ° C. or less. It is more preferable to contain.
  • the CS particles are composed of one core layer composed of a polymer having a glass transition temperature of 0 ° C. or lower and one or more shell layers composed of a polymer having a glass transition temperature of 40 ° C. or higher.
  • it is composed of one core layer composed of a polymer having a glass transition temperature of ⁇ 23 ° C. or lower and one or more shell layers composed of a polymer having a glass transition temperature of 40 ° C. or higher. More preferably.
  • the CS particles are composed of one core layer composed of a polymer having a glass transition temperature of 0 ° C. or less and one shell layer composed of a polymer having a glass transition temperature of 40 ° C. or more.
  • the core layer composed of a polymer having a glass transition temperature of ⁇ 23 ° C. or lower and one shell layer composed of a polymer having a glass transition temperature of 40 ° C. or higher.
  • the glass transition temperature of the core layer may be ⁇ 140 ° C. or higher, for example.
  • the glass transition temperature is measured by a differential thermal scanning calorimeter (DSC).
  • Tg represents the glass transition temperature (° C.) of the copolymer
  • Tgi represents the glass transition temperature (° C.) of the homopolymer of the i component
  • the glass transition temperature of the i-component homopolymer is a value described in “Polymer Data Handbook” edited by the Society of Polymer Sciences (POLYMER HANDBOOK FOURTH EDITION Volume 1, J. Brandrup, Interscience, 1989).
  • the measured glass transition temperature varies depending on the measurement conditions such as the shape of the measurement specimen and the heating rate. For each component contained in the coalescence, it is necessary to optimize the measurement conditions so that the values described in the polymer data handbook can be obtained.
  • the cross-linked polymer constituting the core layer may be one or more selected from the group consisting of acrylic rubber, butadiene rubber, styrene butadiene rubber, silicon rubber, and acrylonitrile butadiene rubber.
  • Acrylic rubber, butadiene rubber, styrene It may be one or more selected from the group consisting of butadiene rubber and silicon rubber, preferably one or more selected from the group consisting of acrylic rubber, butadiene rubber and styrene butadiene rubber, more preferably acrylic.
  • the acrylic rubber may be a copolymer of an acrylate ester, a polyfunctional monomer, and an unsaturated monomer copolymerizable therewith.
  • the acrylic rubber is composed of 60.0 to 99.9% by weight of an acrylate ester, 0.1 to 30.0% by weight of a polyfunctional monomer, and an unsaturated monomer copolymerizable therewith. It may be a copolymer of ⁇ 39.9% by weight.
  • Acrylic rubber is composed of 60.0 to 99.9% by weight of acrylic acid ester, 0.1 to 10.0% by weight of polyfunctional monomer, and 0 to 0 to unsaturated monomer copolymerizable therewith. It may be a copolymer of 39.9% by weight.
  • the acrylic ester may have an alkyl group and / or an epoxy group.
  • the acrylate ester may have an alkyl group having 1 to 22 carbon atoms, or may have an alkyl group having 1 to 12 carbon atoms.
  • Acrylic esters having an alkyl group include alkyl acrylates (for example, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, dodecyl acrylate, stearyl acrylate and One or more selected from the group consisting of behenyl acrylate), hydroxyalkyl acrylate (one or more selected from the group consisting of 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate), and alkoxy acrylate One or more selected from the group consisting of alkyl esters (for example, one or more selected from the group consisting of methoxymethyl acrylate, methoxyethyl acrylate, ethoxymethyl acrylate, and ethoxyethyl acrylate). It may be.
  • the acrylic ester having an epoxy group may be glycidyl acrylate.
  • the polyfunctional monomer is a functional group containing a polymerizable unsaturated bond (for example, a radical polymerizable functional group (specifically, for example, one or more selected from the group consisting of an acrylate group, a methacrylate group, and an allyl group).
  • a radical polymerizable functional group specifically, for example, one or more selected from the group consisting of an acrylate group, a methacrylate group, and an allyl group.
  • allylalkyl (meth) acrylates for example, allyl (meth) acrylates and allylalkyl (meth) acrylates
  • polyfunctional (meth) acrylates for example, ethylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate
  • polypropylene glycol di (meth) acrylate 1 or more diallyl phthalate, triallyl cyanurate, triallyl isocyanurate (TAIC), glycidyl diallyl isocyanurate, and may be at least one selected from the group consisting of divinyl benzene.
  • (meth) acrylate means an acrylate and / or a methacrylate. That is, the (meth) acrylate may be an acrylate, a methacrylate, an acrylate or a methacrylate.
  • the unsaturated monomer copolymerizable with the acrylate ester and the polyfunctional monomer is not particularly limited as long as it is a monomer having a copolymerizable double bond.
  • a methacrylate ester for example, , Methacrylic acid esters (for example, alkyl methacrylates (for example, methyl methacrylate, ethyl methacrylate, etc.) having an alkyl group (for example, an alkyl group having 1 to 22 carbon atoms or an alkyl group having 1 to 12 carbon atoms)
  • hydroxyalkyl ester methacrylate methacrylic acid 2 -Hydroxyethy
  • the amount of the core layer contained in the CS particles is not particularly limited, but the CS particles preferably include, for example, 41% by weight or more of a core layer (preferably a rubber layer made of acrylic rubber). That is, the ratio of the weight of the core layer to the weight of the CS particles (the sum of the weight of the core layer and the weight of the shell layer) is preferably 41% by weight or more.
  • a core layer preferably a rubber layer made of acrylic rubber
  • the CS particles may include 45% by weight or more of the core layer, or 50% by weight or more of the core layer. More specifically, the CS particles preferably include a core layer of 41 wt% or more and 98 wt% or less. In this case, the CS particles may include a core layer of 45 wt% or more and 98 wt% or less, and 50 wt%. As described above, a core layer of 98% by weight or less may be included. In these cases, the amount of the core layer contained in the CS particles may be 97 wt% or less, 96 wt% or less, 95 wt% or less, or 94 wt% or less. There may be.
  • the CS particles include a core layer (preferably a rubber layer made of acrylic rubber) of 41 wt% or more and 84 wt% or less.
  • the CS particles may include a core layer of 41 wt% or more and 80 wt% or less, or may include a core layer of 41 wt% or more and 75 wt% or less.
  • the CS particles may include a core layer of 45% by weight or more and 80% by weight or less, or may include a core layer of 45% by weight or more and 75% by weight or less.
  • the CS particles may include a core layer of 50% by weight or more and 80% by weight or less, and may include a core layer of 50% by weight or more and 75% by weight or less.
  • the shell layer covers at least a part of the core layer. That is, the shell layer is composed of a polymer that covers at least a part of the core layer. More specifically, the shell layer is composed of a polymer that covers at least a part of the surface of the polymer particles constituting the core layer.
  • the CS particles include one or more shell layers. That is, the CS particles may include one shell layer or two or more shell layers, but include one shell layer (the CS particles include one shell layer and one or more shell layers). Or a single shell layer and a single core layer).
  • the polymer constituting the shell layer may be a graft polymer. That is, the shell layer may be composed of a graft polymer formed by graft polymerization on the core layer.
  • the shell layer may be composed of a polymer having a glass transition temperature of 40 ° C. or higher.
  • the glass transition temperature of the shell layer may be, for example, 60 ° C. or higher, or 80 ° C. or higher.
  • the glass transition temperature of the shell layer may be, for example, 160 ° C. or lower, or 150 ° C. or lower.
  • the shell layer may be composed of an acrylic copolymer.
  • the outermost shell layer may be composed of an acrylic copolymer, and each of the two or more shell layers may be composed of an acrylic copolymer. It may be configured.
  • the shell layer may be a copolymer of at least one selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds and an unsaturated monomer copolymerizable therewith.
  • the copolymer may be a copolymer obtained by polymerization of a raw material containing at least one selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds and a polyfunctional monomer.
  • a copolymer of at least one selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds polyfunctional monomers, and unsaturated monomers copolymerizable therewith Good.
  • the shell layer comprises 60.0 to 99.9% by weight of one or more monomers selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds, and a polyfunctional monomer 0 It may be a copolymer of 0.1 to 30.0% by weight and 0 to 39.9% by weight of an unsaturated monomer copolymerizable therewith.
  • the shell layer comprises 60.0 to 99.9% by weight of one or more monomers selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds, and a polyfunctional monomer of 0.1%. It may be a copolymer of ⁇ 10.0% by weight and 0 to 39.9% by weight of unsaturated monomers copolymerizable therewith.
  • (meth) acrylic acid ester means acrylic acid ester and / or methacrylic acid ester. That is, the (meth) acrylic acid ester may be an acrylic acid ester, a methacrylic acid ester, or an acrylic acid ester and a methacrylic acid ester.
  • (Meth) acrylic acid ester may have an alkyl group and / or an epoxy group.
  • the (meth) acrylic acid ester may have an alkyl group having 1 to 22 carbon atoms, or may have an alkyl group having 1 to 12 carbon atoms.
  • the (meth) acrylic acid ester having an alkyl group is a (meth) acrylic acid alkyl ester (for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, (One or more selected from the group consisting of 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate and behenyl (meth) acrylate), (meta ) Acrylic acid hydroxyalkyl esters (for example, one or more selected from the group consisting of 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate), and alkoxyalkyl esters of acrylic acid (for example, ( (Meth) methoxymethyl acrylate, (meth) acrylate Ethyl, may
  • (meth) acrylonitrile means acrylonitrile and / or methacrylonitrile. That is, (meth) acrylonitrile may be acrylonitrile, methacrylonitrile, acrylonitrile and methacrylonitrile.
  • the polyfunctional monomer is a functional group containing a polymerizable unsaturated bond (for example, a radical polymerizable functional group (specifically, for example, one or more selected from the group consisting of an acrylate group, a methacrylate group, and an allyl group).
  • a radical polymerizable functional group specifically, for example, one or more selected from the group consisting of an acrylate group, a methacrylate group, and an allyl group.
  • allylalkyl (meth) acrylates for example, allyl (meth) acrylates and allylalkyl (meth) acrylates
  • polyfunctional (meth) acrylates for example, ethylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate
  • polypropylene glycol di (meth) acrylate 1 or more diallyl phthalate, triallyl cyanurate, triallyl isocyanurate (TAIC), glycidyl diallyl isocyanurate, and may be at least one selected from the group consisting of divinyl benzene.
  • One or more selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds, and unsaturated monomers copolymerizable with polyfunctional monomers are single monomers having copolymerizable double bonds.
  • vinyl arene for example, selected from the group consisting of styrene, ⁇ -methylstyrene, 1-vinylnaphthalene, 2-vinylnaphthalene, monochlorostyrene, dichlorostyrene, and bromostyrene).
  • vinyl carboxylic acid for example, one or more selected from the group consisting of acrylic acid, methacrylic acid, maleic anhydride, itaconic acid, fumaric acid, and mesaconic acid
  • vinyl halide for example, vinyl chloride
  • vinyl bromide and chloroprene vinyl bromide and chloroprene
  • vinyl acetate and alkenes eg, ethylene , Propylene, may be at least one selected from the group consisting of one or more selected from the group consisting of butylene and isobutylene).
  • the CS particles may include a shell layer that is at least partially crosslinked.
  • the shell layer is composed of a copolymer obtained by polymerization of a raw material containing at least one selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds and a polyfunctional monomer. Or a copolymer of one or more selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds, a polyfunctional monomer, and an unsaturated monomer copolymerizable therewith. It is also possible that at least a part thereof is cross-linked.
  • the shell layer is composed of 60.0 to 99.9% by weight of one or more monomers selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds, and a polyfunctional monomer. It is composed of 0.1 to 30.0% by weight of a copolymer and 0 to 39.9% by weight of an unsaturated monomer copolymerizable therewith, and at least a part of the copolymer is crosslinked. Good.
  • the shell layer comprises 60.0 to 99.9% by weight of one or more monomers selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds, and a polyfunctional monomer of 0.1%. It may be composed of a copolymer of ⁇ 10.0% by weight and 0 to 39.9% by weight of unsaturated monomers copolymerizable therewith, and at least a part thereof may be crosslinked.
  • the degree of crosslinking of the shell layer is not particularly limited, but the CS particles may include a shell layer having a degree of crosslinking of 0.26% or more.
  • a shell layer having a crosslinking degree of 0.30% or more may be included, and a shell layer having a crosslinking degree of 0.50% or more may be included.
  • the degree of cross-linking of the shell layer is obtained by polymerization of a raw material containing one or more selected from the group consisting of a (meth) acrylic acid ester and a vinylcyan compound and a polyfunctional monomer.
  • the copolymer is made of a copolymer, it is a ratio (% by weight) of the weight of the polyfunctional monomer to the weight of the raw material.
  • the degree of cross-linking of the shell layer is determined from a copolymer of one or more selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds and a polyfunctional monomer.
  • the polyfunctional monomer with respect to the total of one or more weights selected from the group consisting of the (meth) acrylic acid ester and vinylcyan compound and the weight of the polyfunctional monomer
  • the degree of cross-linking of the shell layer is, for example, one or more selected from the group consisting of (meth) acrylic acid ester and vinylcyan compound, a polyfunctional monomer, and copolymerizable with these.
  • one or more weights selected from the group consisting of the (meth) acrylic acid ester and the vinylcyan compound, and the polyfunctional monomer It is a ratio (% by weight) of the weight of the polyfunctional monomer to the sum of the weight and the weight of the unsaturated monomer copolymerizable therewith.
  • the shell layer is 90% by weight of one or more monomers selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds, and 1.0% by weight of polyfunctional monomers. And a copolymer of 9% by weight of an unsaturated monomer copolymerizable therewith, the shell layer is a shell layer partially crosslinked, and the degree of crosslinking is 1. 0%.
  • the shell layer is composed of a polymer having a polyfunctional monomer of 100% by weight, the degree of crosslinking of the shell layer is 100%.
  • one or more monomers selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds forming a copolymer, polyfunctional monomers, and copolymerizable therewith
  • the ratio of the unsaturated monomer By adjusting the ratio of the unsaturated monomer, the degree of crosslinking of the shell layer can be adjusted.
  • the degree of crosslinking of the shell layer may be 0.26% or more and 100% or less, may be 0.30% or more and 100% or less, and may be 0.50% or more and 100% or less. Good. Further, the degree of crosslinking of the shell layer may be 0.26% or more and 30.0% or less, may be 0.30% or more and 30% or less, and may be 0.50% or more and 30.0%. % Or less. Further, the degree of crosslinking of the shell layer may be 0.26% or more and 10.0% or less, may be 0.30% or more and 10% or less, and may be 0.50% or more and 10.0% or less. % Or less. The degree of cross-linking of the shell layer can be confirmed, for example, by analyzing the CS particles by NMR.
  • CS particles include a shell layer that is at least partially crosslinked (for example, a shell layer having a degree of crosslinking of 0.26% or more (more specifically, for example, a degree of crosslinking of 0.26% or more, 30.
  • a shell layer having a crosslinking degree of 0.30% or more more specifically, for example, A shell layer having a degree of cross-linking of 0.30% or more and 30.0% or less, or a shell layer having a degree of cross-linking of 0.30% or more and 10.0% or less
  • a degree of cross-linking of 0.50% or more (More specifically, for example, a shell layer having a crosslinking degree of 0.50% or more and 30.0% or less, or a shell layer having a crosslinking degree of 0.50% or more and 10.0% or less)
  • the CS particles are 41 w
  • the CS particles include any one of the shell layers that are at least partially crosslinked and the core layer that is at least one of the lower limit values
  • the CS particles are 98 wt% or less, 97 wt% or less, 96 wt% % Or less, 95% or less, or 94% or less of the core layer may be included, and 84% or less, 80% or less, or 75% or less of the core layer may be included.
  • the CS particles may include an uncrosslinked shell layer. That is, when the CS particles include an uncrosslinked shell layer, the CS particles preferably include a core layer of 41% by weight or more. In this case, the CS particles include a core layer of 45% by weight or more. Alternatively, it may contain a core layer of 50% by weight or more.
  • the CS particles including an uncrosslinked shell layer preferably include a core layer of 41 wt% or more and 98 wt% or less, and in this case, the core layer of 45 wt% or more and 98 wt% or less. Or a core layer of 50 wt% or more and 98 wt% or less.
  • the amount of the core layer contained in the CS particles may be 97 wt% or less, 96 wt% or less, 95 wt% or less, or 94 wt% or less. There may be.
  • the CS particles including the non-crosslinked shell layer preferably include a core layer (preferably a rubber layer composed of acrylic rubber) of 41 wt% or more and 84 wt% or less.
  • the particles may include a core layer of 41 wt% or more and 80 wt% or less, or a core layer of 41 wt% or more and 75 wt% or less.
  • the CS particles may include a core layer of 45% by weight or more and 80% by weight or less, or may include a core layer of 45% by weight or more and 75% by weight or less.
  • the CS particles may include a core layer of 50% by weight or more and 80% by weight or less, and may include a core layer of 50% by weight or more and 75% by weight or less.
  • the present composition and the present coating material are 100 parts by weight comprising 58.1 parts by weight or more and 73.9 parts by weight or less of TPU and 26.1 parts by weight or more and 41.9 parts by weight or less of CS particles.
  • the CS particles are composed of one or more core layers and one or more shell layers, and the core layer is made of glass.
  • the shell layer having at least one selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds, and multifunctional A copolymer obtained by polymerization of a raw material containing a monomer and comprising a crosslinked shell layer composed of a copolymer having a glass transition temperature of 40 ° C.
  • the CS particles include the following (a) to (D): (a) The core layer and the shell layer CS containing 50.1% by weight or more and 88.9% by weight or less of the core layer with respect to 100% by weight in total, and the crosslinking degree of the crosslinked shell layer is 0.05% or more and 0.42% or less Particles; and (b) the degree of crosslinking of the crosslinked shell layer comprising 50.1% by weight to 89.4% by weight of the core layer with respect to a total of 100% by weight of the core layer and the shell layer.
  • the cross-linking includes 40.1% by weight or more and 90.4% by weight or less of the core layer. It may be at least one selected from the group consisting of; E the degree of crosslinking of Le layer 0.50 percent, CS particles or less 5.00%.
  • the core layer may contain 51.0% by weight or more and 87.0% by weight or less of the core layer with respect to the total of 100% by weight of the core layer and the shell layer. It is preferable to include 52.0% by weight or more and 85.0% by weight or less of the core layer.
  • the core layer may contain 57.1% by weight or more and 88.9% by weight or less of the core layer with respect to the total of 100% by weight of the core layer and the shell layer. It is preferable that the core layer is contained in an amount of 58.0% by weight or more and 87.0% by weight or less, and more preferably 60.0% by weight or more and 85.0% by weight or less.
  • the CS particles contain the above (a), and the range of 50.1% by weight or more and 88.9% by weight or less, 51.0% by weight or more, 87.87% with respect to 100% by weight in total of the core layer and the shell layer. 0 wt% or less, 52.0 wt% or more, 85.0 wt% or less, 57.1 wt% or more, 88.9 wt% or less, 58.0 wt% or more, 87.0 wt %, Or when the core layer is in the range of 60.0% by weight or more and 85.0% by weight or less, the crosslinking degree of the crosslinked shell layer is 0.05% or more and 0.42% or less. It may be 0.05% or more and 0.43% or less.
  • the core layer and the shell layer may contain 51.0% by weight or more and 89.3% by weight or less of the core layer with respect to 100% by weight in total. It is preferable that the core layer is included in an amount of 52.0 wt% or more and 89.0 wt% or less. Further, when the CS particles contain (b) above, the core layer may contain 57.1% by weight or more and 89.4% by weight or less of the core layer with respect to the total of 100% by weight of the core layer and the shell layer. It is preferable that the core layer is contained in an amount of 58.0% by weight or more and 89.3% by weight or less, and more preferably 60.0% by weight or more and 89.0% by weight or less.
  • the CS particles contain the above (b), and the range of 50.1 wt% or more and 89.4 wt% or less, 51.0 wt% or more, 89. 3 wt% or less, 52.0 wt% or more, 89.0 wt% or less, 57.1 wt% or more, 89.4 wt% or less, 58.0 wt% or more, 89.3 wt% % Or less, or 60.0% by weight or more and 89.0% by weight or less of the core layer, the crosslinking degree of the crosslinked shell layer is more than 0.42% (or 0.42% or more). ), 0.45% or less, or more than 0.43% (or 0.43% or more), or 0.47% or less.
  • the core layer and the shell layer may contain 51.0% by weight or more and 90.0% by weight or less of the core layer with respect to 100% by weight in total. It is preferable that the core layer is included in an amount of 52.0 wt% or more and 89.5 wt% or less.
  • the CS particles contain the above (c), and a range of 51.0% by weight or more, 90.0% by weight or less, or 52.0% by weight or more, 89%, based on a total of 100% by weight of the core layer and the shell layer
  • the degree of cross-linking of the cross-linked shell layer may be more than 0.45% (or 0.45% or more) and 0.50% or less. It may be more than 47% (or 0.47% or more) and 0.70% or less.
  • the core layer may contain 45.0 wt% or more and 90.0 wt% or less of the core layer with respect to the total of 100 wt% of the core layer and the shell layer, It is preferable that the core layer is contained in an amount of 50.0% by weight or more and 89.5% by weight or less.
  • the CS particles contain the above (d), and the range of 45.0 wt% or more, 90.0 wt% or less, or 50.0 wt% or more, 89 wt%, with respect to 100 wt% in total of the core layer and the shell layer
  • the degree of crosslinking of the crosslinked shell layer may be more than 0.50% (or 0.50% or more), 5.00% or less, and 0.70 % (Or 0.70% or more), 5.00% or less, or more than 1.50% (or 1.50% or more), or 5.00% or less. % (Or more than 1.70%) and 5.00% or less.
  • the CS particles have the following (a) to (d): (a) 51.0 wt% or more and 87.0 wt% or less with respect to 100 wt% in total of the core layer and the shell layer.
  • CS particles including the core layer and having a cross-linking degree of the cross-linking shell layer of 0.05% or more and 0.42% or less; and (b) 51% with respect to a total of 100% by weight of the core layer and the shell layer.
  • CS particles including the core layer of 0 wt% or more and 89.3% wt or less, and the degree of cross-linking of the cross-linked shell layer is more than 0.42% and 0.45% or less; (c) Core layer and shell layer And the core layer of 51.0% by weight or more and 90.0% by weight or less with respect to the total of 100% by weight, and the crosslinking degree of the crosslinked shell layer is more than 0.45% and 0.50% or less. CS particles; and (d) 45.0% by weight or more and 90.0% by weight with respect to 100% by weight in total of the core layer and the shell layer. Include the following of the core layer, the degree of crosslinking of 0.50% of the crosslinked shell layer, CS particles is not more than 5.00%; may be at least one selected from the group consisting of.
  • the CS particles include the following (a) to (d): (a) 51.0 wt% or more and 87.0 wt% or less of the core with respect to 100 wt% in total of the core layer and the shell layer.
  • CS particles having a core layer of not less than 89.3% by weight and having a cross-linking degree of the cross-linked shell layer of more than 0.43% and not more than 0.47%; (c) the core layer and the shell layer; CS particles containing the core layer of 51.0% by weight or more and 90.0% by weight or less with respect to the total of 100% by weight, and the crosslinking degree of the crosslinked shell layer is more than 0.47% and 0.70% or less And (d) 45.0% by weight or more and 90.0% by weight or less with respect to 100% by weight in total of the core layer and the shell layer Of including the core layer, the degree of crosslinking 0.70% of crosslinked shell layer, CS particles is not more than 5.00%; may be at least one selected from the group consisting of.
  • the CS particles include the following (a) to (d): (a) 52.0% by weight or more and 85.0% by weight or less of the core with respect to 100% by weight in total of the core layer and the shell layer.
  • the CS particles include the following (a) to (d): (a) 52.0% by weight or more and 85.0% by weight or less of the core with respect to 100% by weight in total of the core layer and the shell layer. And CS particles having a cross-linking degree of the cross-linked shell layer of 0.05% or more and 0.43% or less; and (b) 52.0% with respect to a total of 100% by weight of the core layer and the shell layer.
  • the CS particles are contained in the following cores (a) to (d): (a) 57.1% by weight or more and 88.9% by weight or less with respect to 100% by weight in total of the core layer and the shell layer.
  • the degree of crosslinking of 1.50% of the crosslinked shell layer CS particles is not more than 5.00%; may be at least one selected from the group consisting of.
  • the CS particles include the following cores (a) to (d): (a) 58.0% by weight or more and 87.0% by weight or less of the core with respect to 100% by weight in total of the core layer and the shell layer.
  • the core layer, the degree of crosslinking of 1.50% of the crosslinked shell layer, CS particles is not more than 5.00%; may be at least one selected from the group consisting of.
  • the CS particles include the following cores (a) to (d): (a) 58.0% by weight or more and 87.0% by weight or less of the core with respect to 100% by weight in total of the core layer and the shell layer. CS particles having a cross-linking degree of the cross-linked shell layer of 0.05% or more and 0.43% or less; and (b) 58.0 wt. With respect to 100 wt.% In total of the core layer and the shell layer.
  • CS particles having a core layer of not less than 89.3% by weight and having a cross-linking degree of the cross-linked shell layer of more than 0.43% and not more than 0.47%; (c) the core layer and the shell layer; CS particles containing the core layer of 51.0% by weight or more and 90.0% by weight or less with respect to the total of 100% by weight, and the crosslinking degree of the crosslinked shell layer is more than 0.47% and 1.70% or less And (d) 45.0% by weight or more and 90.0% by weight or less with respect to 100% by weight in total of the core layer and the shell layer Of including the core layer, the degree of crosslinking 1.70% of crosslinked shell layer, CS particles is not more than 5.00%; may be at least one selected from the group consisting of.
  • the CS particles are composed of the following cores (a) to (d): (a) 60.0 wt% or more and 85.0 wt% or less of the core with respect to 100 wt% in total of the core layer and the shell layer. CS particles having a cross-linking degree of the cross-linked shell layer of 0.05% or more and 0.42% or less; and (b) 60.0 wt.% With respect to a total of 100 wt.% Of the core layer and the shell layer.
  • the degree of crosslinking of 1.50% of the crosslinked shell layer, CS particles is not more than 5.00%; may be at least one selected from the group consisting of.
  • the CS particles are composed of the following cores (a) to (d): (a) 60.0 wt% or more and 85.0 wt% or less of the core with respect to 100 wt% in total of the core layer and the shell layer. And CS particles having a cross-linking degree of the cross-linked shell layer of 0.05% or more and 0.43% or less; (b) 60.0 wt.% With respect to a total of 100 wt.% Of the core layer and the shell layer.
  • the CS particles may contain at least the above (a) or at least the above (b). Or at least the above (c) may be included, or at least the above (d) may be included. Further, the CS particles may contain the above (a) and (b). In this case, the CS particles may further contain the above (c), may further contain the above (d), or may further contain the above (c). And (d). The CS particles may contain the above (a) and (c). In this case, the CS particles may further contain (d). The CS particles may include the above (a) and (d). The CS particles may contain the above (b) and (c). In this case, the CS particles may further contain (d). The CS particles may include the above (b) and (d). The CS particles may include the above (c) and (d).
  • grains of said (a) may be sufficient as the crosslinking degree of a crosslinked shell layer, It is preferable that it is 0.15% or more, and it is 0.20% or more. More preferably, it is particularly preferably 0.25% or more.
  • the crosslinking degree of the crosslinked shell layer is preferably 4.00% or less, more preferably 3.00% or less, and 2.00% or less. Is particularly preferred.
  • Each of the upper limit values of the degree of crosslinking in the above (d) is combined with each of the lower limit values of the degree of crosslinking described above.
  • the CS particles are composed of one or more core layers and one or more shell layers
  • the core layer is composed of a polymer having a glass transition temperature of less than 40 ° C.
  • the shell layer is a copolymer obtained by polymerization of a raw material containing at least one selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds and a polyfunctional monomer.
  • a crosslinked shell layer composed of a copolymer having a glass transition temperature of 40 ° C.
  • composition and the present coating material comprise 100 parts by weight of a resin component comprising 59.1 parts by weight or more and 73.9 parts by weight or less of TPU and 26.1 parts by weight or more and 40.9 parts by weight or less of CS particles. 42 parts by weight or more and 87 parts by weight or less of PE And retardants, may contain. In this case, the present composition and the present coating material exhibit extremely excellent flame retardancy.
  • the present composition and the present covering material comprise 59.2 parts by weight or more and 73.7 parts by weight or less of TPU and 26.2 parts by weight or more and 40.7 parts by weight or less of CS particles. It is preferable to contain 100 parts by weight of a resin component and 42 parts by weight or more and 87 parts by weight or less of a PE flame retardant.
  • the present composition and the present coating material are 100 parts by weight composed of 59.5 parts by weight or more and 73.5 parts by weight or less of TPU and 26.5 parts by weight or more and 40.5 parts by weight or less of CS particles. More preferably, it contains 43 parts by weight or more and 85 parts by weight or less of PE flame retardant.
  • the one or more shell layers included in the CS particles are not particularly limited as long as they include a crosslinked shell layer composed of the above copolymer having a glass transition temperature of 40 ° C. or higher. That is, when the CS particles include two or more shell layers, at least one of the two or more shell layers may be the above-described crosslinked shell layer. However, it is preferable that the CS particles include one shell layer, and the one shell layer is the crosslinked shell layer.
  • the cross-linked shell layer is preferably the outermost shell layer constituting the outermost layer of CS particles. That is, when the CS particles include two or more shell layers, the outermost shell layer that is the outermost shell layer in the radial direction of the CS particles among the two or more shell layers may be the crosslinked shell. preferable.
  • the CS particles include one shell layer (the CS particle shell layer is composed of one shell layer), the one shell layer is the outermost shell layer, and is the above-described crosslinked shell layer.
  • the copolymer constituting the cross-linked shell layer is copolymerizable with one or more selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds, polyfunctional monomers, and these. It may be a copolymer with an unsaturated monomer. That is, in this case, the crosslinked shell layer is composed of one or more selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds, a polyfunctional monomer, and an unsaturated monomer copolymerizable therewith. And a glass transition temperature of 40 ° C. or higher.
  • Each of the CS particles is a copolymer obtained by polymerization of a raw material containing at least one selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds and a polyfunctional monomer. It is good also as including the 1 or more shell layer comprised from the copolymer whose glass transition temperature is 40 degreeC or more.
  • the CS particles are each one or more selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds, a polyfunctional monomer, and an unsaturated monomer copolymerizable therewith. It is good also as including the 1 or more shell layer comprised from the copolymer which is a copolymer with a body and whose glass transition temperature is 40 degreeC or more.
  • Each CS particle is a polymer (cross-linked) obtained by polymerization of a raw material that contains at least one selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds and does not contain a polyfunctional monomer. It is good also as including the 1 or more shell layer comprised from the polymer which is a polymer) whose glass transition temperature is 40 degreeC or more.
  • each CS particle is a copolymer (crosslinked) of at least one selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds and an unsaturated monomer copolymerizable therewith. 1 or more shell layers composed of a copolymer having a glass transition temperature of 40 ° C. or higher.
  • the present composition and the present coating material are 100 parts by weight comprising 58.1 parts by weight or more and 73.9 parts by weight or less of TPU and 26.1 parts by weight or more and 41.9 parts by weight or less of CS particles.
  • the CS particles are composed of one or more core layers and one or more shell layers, and the core layer and the shell. It is good also as including the said core layer of 57.1 weight% or more and 82.0 weight% or less with respect to a total of 100 weight% with a layer. In this case, the present composition and the present coating material exhibit extremely excellent flame retardancy.
  • the CS particles preferably include 58.0% by weight or more and 82.0% by weight or less of the core layer with respect to the total of 100% by weight of the core layer and the shell layer. Furthermore, in this case, the CS particles more preferably include 60.0 wt% or more and 82.0 wt% or less of the core layer with respect to 100 wt% of the total of the core layer and the shell layer.
  • the CS layer is in the range of 57.1 wt% or more and 82.0 wt% or less with respect to the total 100 wt% of the core layer and the shell layer, or the core layer in the narrower range described above.
  • the Shore A hardness measured by the method of reading the measured value 10 seconds after the pressure plate is brought into contact with the test piece at a relative humidity of 50% may be 81 or more and 100 or less.
  • the Shore A hardness of the CS particles measured by the above method may be 81 or more and 96 or less, may be 82 or more and 96 or less, and may be 85 or more and 93 or less. It is good.
  • the CS particles are composed of one or more core layers and one or more shell layers, and 57.1% by weight or more with respect to 100% by weight in total of the core layer and the shell layer.
  • the one or more shell layers are selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds. It is good also as a polymer obtained by superposition
  • the CS particles have a core in the range of 57.1% by weight or more and 82.0% by weight or less with respect to the total of 100% by weight of the core layer and the shell layer or the above-mentioned narrower range If the shell layer is not cross-linked, it is a method of CS particles according to JIS K 6253-3: 2012, using a type A durometer as a testing machine, without using an automatic timer device A laminate obtained by stacking six sheets (30 mm ⁇ 40 mm) having a thickness of 1.0 mm or more and 1.5 mm or less is used as a test piece, and the test piece is used at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours.
  • the Shore A hardness measured by a method of reading the measured value 10 seconds after the pressure plate is brought into contact with the test piece at a temperature of 23 ° C. and a relative humidity of 50% is 81 or more, 1 It may be 0 or less.
  • the Shore A hardness of the CS particles measured by the above method may be 81 or more and 96 or less, may be 82 or more and 96 or less, and may be 85 or more and 93 or less. It may be, and may be 85 or more and 90 or less.
  • the CS particles are composed of one or more core layers and one or more shell layers, and 57.1% by weight or more with respect to 100% by weight in total of the core layer and the shell layer. 1 or more selected from the group consisting of (meth) acrylic acid ester and vinylcyan compound, including the core layer in the range of 82.0% by weight or less or the narrower range described above.
  • the present composition and the present coating material are 58.6.
  • a resin component composed of TPU of not less than 7 parts by weight and not more than 73.4 parts by weight and CS particles of not less than 26.6 parts by weight and not more than 41.4 parts by weight, and not less than 41 parts by weight and not more than 87 parts by weight A PE flame retardant, and It may be.
  • the present composition and the present coating material exhibit extremely excellent flame retardancy.
  • the present composition and the present coating material have a weight of 100% consisting of 59.0 parts by weight and 72.0 parts by weight of TPU and 28.0 parts by weight and 41.0 parts by weight of CS particles. It is preferable to contain 41 parts by weight or more and 86 parts by weight or less of PE flame retardant.
  • a resin component composed of 60.0 parts by weight or more and 70.0 parts by weight or less of TPU and 30.0 parts by weight or more of 40.0 parts by weight or less of CS particles; More preferably, it contains PE flame retardant in an amount of not less than 85 parts by weight.
  • the present composition and the present covering material may comprise 58.6 parts by weight or more and 73.4 parts by weight or less of the above-mentioned narrower range TPU and 26.6 parts by weight or more and 41.4 parts by weight or less.
  • 100 parts by weight of the resin component comprising the range or the above-mentioned narrower range of CS particles, and 41 parts by weight or more and 87 parts by weight or less of the above-mentioned narrower range of PE flame retardant
  • the CS particles Is composed of one or more core layers and one or more shell layers, and ranges from 57.1 wt% to 82.0 wt% with respect to a total of 100 wt% of the core layers and the shell layers.
  • the one or more shell layers contain at least one selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds. Obtained by polymerization of raw materials not containing When the polymer is composed of a polymer having a glass transition temperature of 40 ° C. or higher, the method is based on JIS K 6253-3: 2012 for the CS particles, and a type A durometer is used as a tester. A laminate obtained by stacking six sheets (30 mm ⁇ 40 mm) having a thickness of 1.0 mm or more and 1.5 mm or less without using an automatic timer device is used as a test piece, and the test piece is set at a temperature of 23 ° C.
  • the Shore A hardness may be 81 or more and 100 or less.
  • the Shore A hardness of the CS particles measured by the above method may be 81 or more and 96 or less, may be 82 or more and 96 or less, and may be 85 or more and 93 or less. It may be, and may be 85 or more and 90 or less.
  • the polymer constituting the one or more shell layers is selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds. It is good also as a copolymer of 1 or more types and the unsaturated monomer copolymerizable with this. That is, in this case, the one or more shell layers are a copolymer of at least one selected from the group consisting of (meth) acrylic acid esters and vinylcyan compounds and an unsaturated monomer copolymerizable therewith. And it is comprised from the copolymer whose glass transition temperature is 40 degreeC or more.
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-015942
  • (A) 80-98.99% by weight of methyl methacrylate and alkyl acrylate 1 having an alkyl group having 1 to 8 carbon atoms are included.
  • the innermost hard polymer layer 5 to 20 obtained by polymerizing a monomer mixture consisting of 20 to 20% by weight, a multifunctional grafting agent 0.01 to 1% by weight and a multifunctional crosslinking agent 0 to 0.5% by weight 30 parts by weight; (B) 70-99.5% by weight of an acrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms, 0-30% by weight of methyl methacrylate, 0.5-5% by weight of a polyfunctional grafting agent, and 20 to 45 parts by weight of an intermediate hard polymer layer obtained by polymerizing a monomer mixture comprising 0 to 5% by weight of a polyfunctional crosslinking agent; (C) 90 to 99% by weight of methyl methacrylate and 1 to 8 carbon atoms
  • the Archi Acrylic soft multilayer resin consisting of hard polymer layers 50 to 75 parts by weight of the outermost layer formed by polymerizing a monomer mixture consisting of acrylic acid alkyl esters tenth to one percent by weight with
  • the alkyl ester of acrylic acid having the highest glass transition temperature is methyl acrylate, and the glass transition temperature thereof is 10 ° C.
  • the glass transition temperature is 105 ° C. Therefore, the glass transition temperature of the intermediate layer of (B) in Patent Document 2 is highest when 70 parts by weight of methyl acrylate and 30 parts by weight of methyl methacrylate are used in combination.
  • the glass transition temperature is calculated to be 33 ° C. according to the above formula (1). That is, the intermediate layer of (B) in Patent Document 2 does not correspond to the crosslinked shell layer in the present embodiment.
  • the glass transition temperature of methyl methacrylate is 105 ° C.
  • the glass transition temperature of the acrylic acid alkyl ester having the lowest glass transition temperature is about ⁇ 110 ° C. is there. Therefore, the glass transition temperature of the polymer when used in combination with 90 parts by weight of methyl methacrylate and 10 parts by weight of the alkyl acrylate is approximately 61 ° C. according to the above formula (1).
  • the polymer constituting the shell layer is preferably excellent in compatibility with TPU. For this reason, it is preferable that a shell layer is comprised from the polymer whose difference of the solubility parameter (SP) value and SP value of TPU is 5 or less.
  • the difference between the SP value of the polymer constituting the shell layer and the SP value of the TPU is preferably 3 or less, more preferably 2 or less, and particularly preferably 1 or less.
  • the difference between the solubility parameter (SP) value of the whole polymer constituting the two or more shell layers and the SP value of TPU is 5 or less (preferably 3 or less). , More preferably 2 or less, particularly preferably 1 or less).
  • the present composition and the present covering material comprise 58.1 parts by weight or more and 73.9 parts by weight or less of TPU and 26.1 parts by weight or more and 41.9 parts by weight or less of CS particles. It is preferable that the total of the weight part of TPU and the weight part of the CS particles is 100 parts by weight. In this case, the present composition and the present coating material comprise 58.5 parts by weight or more and 73.5 parts by weight or less of TPU and 26.5 parts by weight or more and 41.5 parts by weight or less of CS particles. It is good also as including so that the sum total of the weight part of this and the weight part of the said CS particle may be 100 weight part. When this composition and this coating
  • covering material contain the flame retardant which consists of 35.2 weight part or more and 72.3 weight part CS particle
  • covering material are good also as including the flame retardant which consists of 36.1 weight part or more and CS particle of 70.9 weight part or less with respect to TPU and the said TPU 100 weight part.
  • covering material contain TPU and CS particle
  • the present composition and the present coating material contain a PE flame retardant as a non-halogen (halogen-free) flame retardant.
  • the PE flame retardant is a phosphate ester exhibiting flame retardancy in the thermoplastic polyurethane resin composition and conductor coating material containing TPU.
  • the PE flame retardant for example, in the flame retardancy test as described above for the CS particles, the flame extinction time of the test piece of the thermoplastic polyurethane-based resin composition containing TPU and the PE flame retardant and the conductor coating material, It is a phosphoric acid ester that is reduced from the flame-out time of the test piece of the thermoplastic polyurethane resin composition containing TPU and not containing the PE flame retardant and the conductor coating material.
  • the PE flame retardant may be a condensed phosphate ester. Further, the PE flame retardant may be a phosphate ester having a cyclic structure in the molecule. In this case, the PE flame retardant may be a condensed phosphate ester containing a cyclic structure in the molecule.
  • the cyclic structure includes a benzene ring and / or a heterocyclic ring (for example, a heterocyclic ring containing one or more selected from the group consisting of a phosphorus atom, an oxygen atom and a nitrogen atom, or a phosphorus atom and / or an oxygen atom).
  • a heterocyclic ring may be a benzene ring and / or a heterocyclic ring (for example, a heterocyclic ring containing one or more selected from the group consisting of a phosphorus atom, an oxygen atom and a nitrogen atom, or a phosphorus atom and / or an oxygen atom).
  • PE flame retardant is preferably excellent in compatibility with TPU.
  • PE flame retardant is a phosphate ester whose difference between the solubility parameter (SP) value and the SP value of TPU is 5 or less.
  • the difference between the SP value of the PE flame retardant and the SP value of the TPU is preferably 3 or less, more preferably 2 or less, and particularly preferably 1 or less.
  • the present composition and the present covering material consist of 58.1 parts by weight to 73.9 parts by weight of TPU and 26.1 parts by weight to 41.9 parts by weight of CS particles. It is preferable that the resin component of a weight part and PE flame retardant of 42 weight part or more and 87 weight part or less are included. In this case, the present composition and the present coating material are 100 weights composed of 58.5 parts by weight or more and 73.5 parts by weight or less of TPU and 26.5 parts by weight or more and 41.5 parts by weight or less of CS particles. Part of the resin component and 43 parts by weight or more and 85 parts by weight or less of PE flame retardant. When this composition and this coating
  • covering material are a TPU, the flame retardant which consists of 35.2 weight part or more and 72.3 weight part or less CS particle with respect to 100 weight part of the said TPU, the said TPU, and the said CS particle, It is preferable to contain 42 parts by weight or more and 87 parts by weight or less of PE flame retardant with respect to 100 parts by weight in total.
  • the present composition and the present coating material comprise TPU, a flame retardant comprising 36.1 parts by weight or more and 70.9 parts by weight or less of CS particles, and the TPU and the CS particles with respect to 100 parts by weight of the TPU.
  • PE flame retardant 43 parts by weight or more and 85 parts by weight or less of PE flame retardant may be included with respect to 100 parts by weight in total.
  • covering material contain TPU, CS particle
  • covering material contain the flame retardant which consists of 21.9 weight part or more and 40.7 weight part or less CS particles with respect to a total of 100 weight part of TPU and PE flame retardant.
  • the present composition and the present covering material include a flame retardant composed of 22.4 parts by weight or more and 40.1 parts by weight or less of CS particles with respect to a total of 100 parts by weight of TPU and PE flame retardant. Also good.
  • the present composition and the present covering material are a total of 100 of TPU, 63.2 parts by weight or more and 135.3 parts by weight or less of PE flame retardant with respect to 100 parts by weight of the TPU, and the TPU and PE flame retardant.
  • covering material are the sum total of TPU, PE flame retardant of 66.2 weight part or more and 130.8 weight part or less with respect to 100 weight part of said TPU, and said TPU and said PE flame retardant. It is good also as including the flame retardant which consists of 30.6 weight part or more and 40.1 weight part or less CS particle
  • covering material are a total of 100 of TPU, PE flame retardant 64.3 weight part or more and 76.9 weight part or less with respect to 100 weight part of said TPU, and said TPU and said PE flame retardant. It is good also as a flame retardant which consists of 26.1 weight part or more and 40.1 weight part or less CS particle
  • covering material contain TPU, PE flame retardant, and CS particle
  • covering material contain TPU, PE flame retardant, and CS particle
  • coated material are polyester type TPU (specifically, For example, a polyester TPU having a flow starting point of 155 ° C. or higher, 160 ° C. or higher, preferably 170 ° C. or higher, 175 ° C. or higher, or 180 ° C. or higher, more specifically 155 ° C. or higher, 160 ° C. or higher, preferably 170 An adipate-based TPU having a flow start point of 175 ° C. or higher, 175 ° C. or higher, or 180 ° C.
  • the cross-linking degree is 0.26% or higher (for example, 0.26% or more, 30.0% or less, or 0.26% or more, 10.0% or less) shell layer
  • the degree of crosslinking is 0.30% or more (for example, 0.30% or more, 30.0%) % Or more Or 0.30% or more and 10.0% or less) of a shell layer or a degree of crosslinking of 0.50% or more (for example, 0.50% or more, 30.0% or less, or 0.50% or more, 10. 0% or less of the shell layer) may be included.
  • the present composition and the present coating material include a specific TPU having a specific weight ratio as described above, a PE flame retardant, and CS particles including any of the shell layer that is at least partially crosslinked.
  • the CS particles may include 41% by weight or more, 45% by weight or more, or 50% by weight or more of the core layer.
  • the CS particles may include 98% by weight or less, 97% by weight or less, 96% by weight or less, 95% by weight or less, or 94% by weight or less of the core layer, and further 84% by weight or less. 80% by weight or less, or 75% by weight or less of the core layer.
  • covering material are good also as not including a radically polymerizable compound, for example, not including a radical polymerization initiator, and good also as not including a hardening
  • the present composition may not be a curable composition.
  • covering material is good also as not being a curable resin raw material.
  • the method for producing the composition includes mixing TPU, PE flame retardant, and CS particles. That is, this composition is manufactured as a mixture obtained by mixing TPU, PE flame retardant, and CS particle flame retardant.
  • the manufacturing method of this composition is 58.1 weight part or more and 73.9 weight part or less (for example, 58.5 weight part or more, 73.5 weight part or less) TPU, 26.1 weight part, for example.
  • the manufacturing method of this composition is 35.2 weight part or more and 72.3 weight part or less (for example, 36.1 weight part or more and 70.9 weight part or less) with respect to TPU and the said TPU 100 weight part.
  • PE flame retardant comprising 42 parts by weight or more and 87 parts by weight or less (for example, 43 parts by weight or more and 85 parts by weight or less) with respect to a total of 100 parts by weight of the above-described CS particles and 100 parts by weight of the TPU and the CS particles. And mixing.
  • the manufacturing method of this composition is 21.9 weight part or more and 40.7 weight part or less (for example, 22.4 weight part or more, 40.1 weight part with respect to a total of 100 weight part of TPU and PE flame retardant. It is preferable to include mixing a flame retardant composed of CS particles by weight or less.
  • the manufacturing method of this composition is TPU and 63.2 weight part or more and 135.3 weight part or less (for example, 66.2 weight part or more and 130.8 weight part or less) with respect to 100 weight part of said TPU.
  • the manufacturing method of this composition is a total of 100 weight of TPU, PE flame retardant 64.3 weight part or more and 76.9 weight part or less with respect to 100 weight part of said TPU, and said TPU and said PE flame retardant. It is also preferable to include mixing 26.1 parts by weight or more and 40.1 parts by weight or less of a flame retardant composed of CS particles.
  • the mixing in the production method of the present composition is performed by using a mixing apparatus such as a Henschel mixer, a ribbon blender, a tumbler, a mazeller, a Banbury mixer, a kneader, an extruder, a mixing roll, and the like.
  • a mixing apparatus such as a Henschel mixer, a ribbon blender, a tumbler, a mazeller, a Banbury mixer, a kneader, an extruder, a mixing roll, and the like.
  • covering material includes shape
  • the production method of the present covering material is 58.1 parts by weight or more and 73.9 parts by weight or less (for example, 58.5 parts by weight or more and 73.5 parts by weight or less) TPU, 26.1 parts by weight or more, 41 0.9 parts by weight or less (for example, 26.5 parts by weight or more and 41.5 parts by weight or less) of CS particles, and 100 parts by weight of the resin component, 42 parts by weight or more and 87 parts by weight or less (for example, 43 parts by weight) It is preferable to include molding a resin raw material containing a PE flame retardant in an amount of 85 parts by weight or more and 85 parts by weight or less.
  • covering material is 35.2 weight part or more and 72.3 weight part or less (for example, 36.1 weight part or more and 70.9 weight part or less) with respect to 100 weight part of TPU and the said TPU.
  • PE flame retardant comprising 42 parts by weight or more and 87 parts by weight or less (for example, 43 parts by weight or more and 85 parts by weight or less) with respect to a total of 100 parts by weight of the above-described CS particles and 100 parts by weight of the TPU and the CS particles. It is preferable to include molding a resin raw material containing.
  • covering material is 21.9 weight part or more and 40.7 weight part or less (for example, 22.4 weight part or more, 40.1 weight part with respect to a total of 100 weight part of TPU and PE flame retardant. It is preferable to include molding a resin raw material containing a flame retardant composed of CS parts by weight or less. Moreover, the manufacturing method of this coating
  • covering material is a total of 100 weight of TPU, PE flame retardant 64.3 weight part or more and 76.9 weight part or less with respect to 100 weight part of said TPU, and said TPU and said PE flame retardant. It is also preferable to include molding a resin raw material containing 26.1 parts by weight or more and 40.1 parts by weight or less of a flame retardant composed of CS particles.
  • covering material is not specifically limited, For example, it is a sheet form (a sheet
  • a resin material melted by heating is extruded from an extruder to produce a film-shaped coating material, and then a conductor is coated with the film-shaped coating material (for example, the film-shaped coating material)
  • the present covering material for covering the conductor may be manufactured by winding the wire around a conducting wire. Further, for example, the present covering material for covering the conductor may be manufactured by extruding a resin raw material melted by heating from the extruder to the outer periphery of the conductor.
  • This composition has excellent flame retardancy. For this reason, this composition is preferably applied to the use as which the outstanding flame retardance is requested
  • This coating material has excellent flame retardancy. That is, for example, in the flame retardancy test described above for the CS particles, the present covering material has a time (first extinguishing time) of 15 minutes after first contacting the burner flame with the test piece of the present covering material. It may be less than a second.
  • thermoplastic polyurethane resin composition (resin raw material)
  • TPU an adipate TPU having a flow starting point of 180 ° C.
  • Trixylenyl phosphate was used as a phosphate ester flame retardant.
  • CS particles core-shell rubber particles containing 89% by weight of a core layer composed of acrylic rubber and 11% by weight of a shell layer composed of an acrylic copolymer having a degree of crosslinking of 0.50% (volume of primary particles) The average particle size was 187 nm). That is, as the CS particles, those composed of one core layer and one shell layer were used.
  • latex of acrylic rubber particles constituting the core layer was produced. That is, in a glass container having a thermometer, a stirrer, a nitrogen inlet, and a monomer and emulsifier addition device, 200 parts by weight of deionized water, and an amount with which the number average particle diameter becomes a target value. 0.02 part by weight of sodium polyoxyethylene alkyl ether phosphate was charged, and the temperature was raised to 40 ° C. while stirring in a nitrogen stream. Next, a mixture of 4.975 parts by weight of butyl acrylate, 0.025 parts by weight of allyl methacrylate, and 0.02 parts by weight of cumene hydroperoxide was charged.
  • a shell layer was formed. That is, after producing the above rubber latex, the temperature was adjusted to 50 ° C., and methyl methacrylate was 11.68 parts by weight, butyl acrylate was 0.618 parts by weight, allyl methacrylate was 0.062 parts by weight, and cumene hydroperoxide. A mixture containing 0.006175 parts by weight was continuously added at 25 parts by weight per hour. After completion of the addition, 0.1 part by weight of cumene hydroperoxide was added, and stirring was continued until the polymerization conversion reached 98% or more to complete the polymerization.
  • a copolymer obtained by polymerization of a raw material composed of 0.50% by weight of allyl methacrylate, 5.00% by weight of butyl acrylate, and the remaining methyl methacrylate, which has a glass transition temperature Obtained a latex of core-shell rubber particles containing a crosslinked shell layer composed of a copolymer at 91.6 ° C.
  • the core-shell rubber particle latex is 10 m above the liquid level at the bottom of the tower at a spraying pressure of 3.7 kg / cm 2 using a swirl type conical nozzle (nozzle diameter 0.6 mm) which is a kind of a pressure nozzle.
  • spraying was performed so that the volume average droplet diameter was about 200 ⁇ m.
  • a 35 wt% aqueous calcium chloride solution was mixed with air using a two-fluid nozzle so that the calcium chloride solid content was 5 to 15 parts by weight with respect to 100 parts by weight of the core shell rubber particle solids.
  • Spraying was performed with a diameter of 0.1 to 10 ⁇ m.
  • the latex droplets that dropped in the tower were put into a receiving tank at the bottom of the tower and recovered.
  • thermoplastic polyurethane-based resin composition (resin raw material) was produced.
  • the conductor coating material was manufactured by shape
  • the flame retardance test was done as follows. That is, a test piece (125 mm ⁇ 13 mm ⁇ 3 mm) prepared by punching a sheet of conductor coating material (sheet manufactured from a thermoplastic polyurethane resin composition) with a punching blade, and an HVUL tester which is a UL combustion tester (Made by Atlas Co., Ltd.) and the flame retardance test were done as follows. (1) First, the test piece was suspended vertically by fixing the upper end of the test piece to the clamp so that one end in the longitudinal direction of the test piece was on the upper side and the other end was on the lower side.
  • test piece after the first extinguishing time was measured (the test piece from which the flame had disappeared) was again brought into contact with the burner flame as described above, and the extinction time and the presence or absence of drip were similarly confirmed. was taken as the second measurement result.
  • Such a flame retardancy test was performed twice for each test piece.
  • FIG. 5A shows the formulation (parts by weight of TPU, PE flame retardant and CS particles) and the results of the flame retardancy test for each of Examples 1A-1 to 1A-19.
  • FIG. 5B shows the parts by weight of CS particles and the results of the flame retardancy test for each of Examples 1B-1 to 1B-19 with respect to a total of 100 parts by weight of TPU and PE flame retardant.
  • Examples 1B-1 to 1B-19 correspond to Examples 1A-1 to 1A-19 in FIG. 5A, respectively, and the weight of CS particles relative to 100 parts by weight of TPU and PE flame retardant in total.
  • the part is a value calculated from the weight parts of TPU, PE flame retardant and CS particles shown in FIG. 5A.
  • the flame extinguishing time shown in “First time” in the “Flame retardant test” column of FIGS. 5A and 5B is the flame extinguishing time after the burner flame is first contacted with the test piece in the flame retardant test.
  • the flame extinguishing time indicated in the “second time” in the “flame retardant test” column is obtained by bringing the burner flame into contact with the test piece after the first extinguishing time is measured (the test piece from which the flame has disappeared). It is the extinguishing time after.
  • “DR” indicates that drip has occurred
  • “BO” indicates that burnout has occurred
  • ⁇ ” indicates that measurement has failed.
  • rank “A” is set when the flame extinguishing time is 0 to 15 seconds
  • rank “B” is set when the extinguishing time is 16 to 40 seconds
  • rank is set when the extinguishing time is 41 to 80 seconds.
  • the result of ranking “C”, flame extinguishing time of 81 seconds or more as rank “D”, and drip or burnout as rank “E” is shown.
  • first flame extinguishing time is “A” and the second flame extinguishing time is “A”, “B” or “C”
  • extremely excellent flame retardancy is confirmed. .
  • thermoplastic polyurethane resin molded product such as a conductor coating
  • the fire extinguishes immediately after it first ignites it effectively avoids the subsequent spread of the fire it can. Therefore, it is very important that the time until the fire extinguishes after the first fire is extinguished, that is, the first flame extinguishing time is short enough to be ranked A in the flame retardancy test.
  • Example 1A-1 in FIG. 5A and Example 1B-1 in FIG. 5B a drip was generated in which a part of the test piece melted and dropped while burning.
  • Example 1A-2 to Example 1A-4 in FIG. 5A and Example 1B-2 to Example 1B-4 in FIG. 5B the test piece burned out in the second test.
  • Examples 1A-16 to 1A-19 in FIG. 5A and Examples 1B-16 to 1B-19 in FIG. 5B the test piece was burned out in the first test.
  • thermoplastic polyurethane resin composition and the conductor coating material comprise TPU of 58.5 parts by weight or more and 73.5 parts by weight or less, and 26.5 parts by weight or more and 41.5 parts by weight or less of CS particles.
  • the total of the parts by weight of the TPU and the parts by weight of the CS particles is 100 parts by weight (the thermoplastic polyurethane resin composition and the conductor coating material are a total of 100 parts of TPU and PE flame retardant). 22.4 parts by weight or more and 40.1 parts by weight or less of CS particles were included) (Examples 1A-5 to 1A-15 in FIG. 5A and Examples 1B-5 to 1B in FIG. 5B).
  • the flame extinguishing time in the first test was as extremely short as 0 to 6 seconds, and the test piece did not burn out even in the second test.
  • thermoplastic polyurethane-based resin composition and the conductor coating material have TPU, specific mixing ratios such as Example 1A-5 to Example 1A-15 in FIG. 5A and Example 1B-5 to Example 1B-15 in FIG. 5B.
  • TPU specific mixing ratios
  • the thermoplastic polyurethane resin composition and the conductor coating material body showed extremely high flame retardancy.
  • thermoplastic polyurethane-based resin composition and the conductor coating material are mixed at a more limited mixing ratio of Example 1A-5 to Example 1A-13 in FIG. 5A and Example 1B-5 to Example 1B-13 in FIG. 5B.
  • TPU, CS particles and PE flame retardant are included, the first flame extinguishing time is “A”, the second flame extinguishing time is “C”, and the thermoplastic polyurethane resin composition and the conductor coating material body are Higher and extremely good flame retardancy.
  • thermoplastic polyurethane resin composition (resin raw material)
  • 16 types of thermoplastic polyurethane resin compositions were produced mainly by changing the blending amount of the PE flame retardant.
  • FIG. 6 shows the composition of the conductor coating material and the results of the flame retardancy test for each of Examples 2-1 to 2-17, as in FIG. 5A described above.
  • Example 2-8 the result of Example 1-9 described above in which 45 parts by weight of PE flame retardant was blended with 100 parts by weight of the resin component (total of TPU and CS particles). Show.
  • Example 2-1 to 2-4 the test piece burned out in the first test.
  • Example 2-5 and Example 2-6 the test piece burned out in the second test.
  • Examples 2-16 and 2-17 in which 88 parts by weight or more of the PE flame retardant was blended with 100 parts by weight of the resin component, kneading could not be performed, and the conductor coating material (thermoplastic polyurethane resin composition) Test piece) could not be manufactured.
  • thermoplastic polyurethane resin composition and the conductor coating material contain 43 parts by weight or more and 85 parts by weight or less of PE flame retardant with respect to 100 parts by weight of the resin component composed of TPU and CS particles (thermoplastic polyurethane).
  • the resin composition and the conductor coating material contain 66.2 parts by weight or more and 130.8 parts by weight or less of PE flame retardant with respect to 100 parts by weight of TPU.
  • the flame extinguishing time in the test was an extremely short time of 0 to 2 seconds, and the test piece did not burn out even in the second test.
  • thermoplastic polyurethane resin composition and the conductor coating material contain TPU, CS particles, and PE flame retardant at specific mixing ratios as in Examples 2-7 to 2-15, so that the thermoplastic polyurethane system The resin composition and the conductor coating material exhibited extremely high flame retardancy.
  • thermoplastic polyurethane resin composition (resin raw material)
  • TPU an adipate TPU having a flow starting point of 180 ° C.
  • Trixylenyl phosphate was used as a phosphate ester flame retardant.
  • CS particles 10 types of core-shell rubber particles (volume-average particles of primary particles) containing a core layer composed of acrylic rubber and a shell layer composed of an uncrosslinked acrylic copolymer in different weight ratios. The diameter was 181 nm to 188 nm. That is, as the CS particles, those composed of one core layer and one shell layer were used.
  • the non-crosslinked acrylic copolymer constituting the shell layer of CS particles is a copolymer of methyl methacrylate and butyl acrylate in the same manner as in Example 1 except that allyl methacrylate is not used. Formed by.
  • the degree of cross-linking of the shell layer in this example is 0%
  • 14 types of thermoplastic polyurethane-type resin compositions (resin raw material) were manufactured like the above-mentioned Example 1.
  • Shore A hardness of CS particles Further, the Shore A hardness of each CS particle used was measured. That is, in the method in accordance with JIS K 6253-3: 2012 (vulcanized rubber and thermoplastic rubber—how to obtain hardness—part 3: durometer hardness), a single type of CS particles under the following conditions: The Shore A hardness of the test piece comprised from was measured. As a testing machine, a type A durometer (Asker Rubber Hardness Tester A type, Constant Pressure Load CL-150L type (load 1.0 kg) manufactured by Kobunshi Keiki Co., Ltd.) was used. An automatic timer device was not used.
  • a type A durometer As a testing machine, a type A durometer (Asker Rubber Hardness Tester A type, Constant Pressure Load CL-150L type (load 1.0 kg) manufactured by Kobunshi Keiki Co., Ltd.) was used. An automatic timer device was not used.
  • test piece a laminate obtained by stacking six sheets (30 mm ⁇ 40 mm) (conductor covering material) having a thickness of 1.0 mm or more and 1.5 mm or less was used. This test piece was conditioned for 24 hours or more at a temperature of 23 ° C. and a relative humidity of 50% before measurement. Thereafter, the Shore A hardness of the test piece was measured at a temperature of 23 ° C. and a relative humidity of 50% by reading a measurement value 10 seconds after the pressure plate was brought into contact with the test piece. Note that the tip of the needle was measured at a position 12.0 mm or more away from the end of the test piece. Moreover, the measurement point was 5 times and the median value of the five measurement values (the third highest value among the five measurement values) was adopted as the Shore A hardness value.
  • FIG. 7 shows the blending of the thermoplastic polyurethane resin composition and the conductor coating material and the results of the flame retardancy test for each of Examples 3-1 to 3-14, as in FIG. 5A described above. .
  • the number given to the right side of “CS-ACR” indicates the weight percentage of the core layer of CS particles. That is, for example, “CS-ACR 89.0” refers to CS particles containing 89.0 wt% core layer.
  • Example 3-1 in which CS particles containing 99.0% by weight of the core layer were used, the test piece was burned out in the first test.
  • Example 3-14 using CS particles containing 40.0% by weight of the core layer, the test piece drip occurred in the second test.
  • thermoplastic polyurethane resin composition and the conductor coating material contained CS particles containing 50.0 to 94.0% by weight of the core layer, the test piece was burned out. There wasn't.
  • thermoplastic polyurethane-based resin composition and the conductor coating material include CS particles including a core layer of 50.0 to 94.0% by weight, the thermoplastic polyurethane-based resin composition and the conductor coating material are High flame retardancy was shown.
  • thermoplastic polyurethane resin composition and the conductor coating material contained CS particles containing a core layer of 50.0 to 82.0% by weight
  • the first test The flame extinguishing time was 0 to 1 second, and the test piece did not burn out in the second test.
  • thermoplastic polyurethane-based resin composition and the conductor coating material include CS particles including a core layer of 50.0 to 82.0% by weight, the thermoplastic polyurethane-based resin composition and the conductor coating material are extremely High flame retardancy was shown.
  • thermoplastic polyurethane resin composition and the conductor coating material include CS particles including a core layer of 60.0 to 82.0% by weight
  • the first flame extinction The time was "A” and the second flame extinguishing time was "C”
  • the thermoplastic polyurethane resin composition and conductor covering material body exhibited higher and extremely excellent flame retardancy.
  • the Shore A hardness of the CS particles containing the core layer of 60.0 to 82.0% by weight used in Examples 3-7 to 3-10 was 85 to 90.
  • thermoplastic polyurethane resin composition (resin raw material)
  • TPU an adipate TPU having a flow starting point of 180 ° C.
  • Trixylenyl phosphate was used as a phosphate ester flame retardant.
  • CS particles five types of core-shell rubber particles including a core layer composed of acrylic rubber and a shell layer composed of acrylic copolymers having different degrees of crosslinking were used. That is, as the CS particles, those composed of one core layer and one shell layer were used.
  • the core-shell rubber particles used contained 89.0% by weight of the core layer.
  • the degree of crosslinking of the CS particle shell layer was adjusted by the ratio of methyl methacrylate, butyl acrylate and allyl methacrylate used in the formation of the shell layer in the CS particle production method of Example 1 described above. And 11 types of thermoplastic polyurethane-type resin compositions (resin raw material) were manufactured like the above-mentioned Example 1.
  • FIG. 1 The degree of crosslinking of the CS particle shell layer was adjusted by the ratio of methyl methacrylate, butyl acrylate and allyl methacrylate used in the formation of the shell layer in the CS particle production method of Example 1 described above.
  • 11 types of thermoplastic polyurethane-type resin compositions (resin raw material) were manufactured like the above-mentioned Example 1.
  • FIG. 8 shows the blending of the thermoplastic polyurethane resin composition and the conductor coating material and the results of the flame retardancy test for each of Examples 4-1 to 4-11, as in FIG. 5A described above. .
  • the number attached to the right side of “CS-SC” indicates the degree of crosslinking (%) of the shell layer of CS particles. That is, for example, “CS-SC0.50” indicates a CS particle including a shell layer having a cross-linking degree of 0.50%.
  • Example 4-1 the result of Example 3-5 described above using CS particles (CS-SC0) containing an uncrosslinked shell layer (that is, a shell layer having a crosslinking degree of 0%) is shown. Is shown.
  • Example 4-1 to 4-11 the test piece did not burn out. That is, in any of Examples 4-1 to 4-11, the thermoplastic polyurethane resin composition and the conductor coating material exhibited high flame retardancy. Further, the results of the flame retardancy test of Example 4-2 using CS particles containing a shell layer having a degree of cross-linking of 0.25% are the same as Example 4-1 using CS particles containing an uncrosslinked shell layer. In Examples 4-7 to 4-11 using CS particles containing a shell layer having a degree of cross-linking of 0.45 to 2.00%, the flame-out time in the first test was It was remarkably shorter than that of 4-1 to Example 4-6, 0 to 11 seconds.
  • thermoplastic polyurethane resin composition and the conductor coating material have a degree of cross-linking of 0.45% or more (more specifically 0.45% or more, as in Examples 4-7 to 4-11). 00% or less) when CS particles containing a shell layer are included, the first flame extinguishing time is “A”, the second flame extinguishing time is “C”, and the thermoplastic polyurethane resin composition and conductor coating The material showed very good flame retardancy.
  • thermoplastic polyurethane resin composition (resin raw material)
  • TPU thermoplastic polyurethane resin composition
  • an adipate TPU having a flow starting point of 180 ° C. was used.
  • Trixylenyl phosphate was used as a phosphate ester flame retardant.
  • core-shell rubber particles containing, as CS particles, a core layer composed of butadiene rubber or styrene-butadiene rubber and a shell layer composed of an uncrosslinked acrylic copolymer in different weight ratios, and silicon
  • a commercially available core layer comprising a rubber (polydimethylsiloxane-poly-n-butyl acrylate composite rubber) and a shell layer comprising an uncrosslinked acrylic copolymer (poly (methyl methacrylate))
  • a total of 12 core-shell rubber particles volume average particle diameter of primary particles: 181 nm to 191 nm) of core-shell rubber particles (polydimethylsiloxane rubber 70% by weight) (methabrene SX005, manufactured by Mitsubishi Rayon Co., Ltd.) were used. That is, as the core-shell rubber particles, those composed of one core layer and one shell layer were used.
  • the butadiene rubber particles constituting the core layer were produced as follows. That is, 200 parts by weight of deionized water, 0.002 parts by weight of ethylenediaminetetraacetic acid disodium salt, sulfuric acid solution in a pressure vessel having a thermometer, a stirrer, a nitrogen inlet, and a monomer and emulsifier addition device.
  • the solution is kept until the conversion rate exceeds 97% by weight, sodium form Was added aldehyde sulfoxylate 0.1 part by weight, the glass transition temperature to obtain a -80 ° C. of the rubber latex of the butadiene rubber particles.
  • the styrene butadiene rubber particles constituting the core layer were produced as follows. That is, in a pressure vessel having a thermometer, a stirrer, a nitrogen inlet, and a monomer and emulsifier addition device, 200 parts by weight of deionized water, 0.002 part by weight of ethylenediaminetetraacetic acid disodium salt, sulfuric acid Ferric iron (0.0012 parts by weight), ethylenediaminetetraacetic acid disodium salt (0.008 parts by weight), and sodium polyoxyethylene alkyl ether phosphate in an amount such that the number average particle size is a target value were charged, and deoxidation and nitrogen substitution were performed.
  • the silicon rubber particles composing the core layer are produced, for example, as follows. That is, deionized water, sodium dodecylbenzenesulfonate, dodecylbenzenesulfonate, terminal hydroxyorganopolysiloxane (trade name: PRX413, manufactured by Toray Dow Corning Silicone Co., Ltd.), and ⁇ -methacryloyloxypropylmethyldimethoxysilane A liquid mixture consisting of 2.55 parts by weight K.
  • PRX413 sodium dodecylbenzenesulfonate
  • dodecylbenzenesulfonate dodecylbenzenesulfonate
  • terminal hydroxyorganopolysiloxane trade name: PRX413, manufactured by Toray Dow Corning Silicone Co., Ltd.
  • ⁇ -methacryloyloxypropylmethyldimethoxysilane A liquid mixture consisting of 2.55 parts by weight K.
  • the obtained emulsion was added together with 200 parts by weight of deionized water to a glass container having a thermometer, a stirrer, a nitrogen inlet, and a monomer and emulsifier addition device. React at 24 ° C. for 24 hours. Thereafter, the pH of the system is adjusted to 6.8 with sodium hydroxide.
  • a latex of core-shell rubber particles was manufactured by forming a shell layer using each rubber particle constituting the core layer. That is, the non-crosslinked acrylic copolymer constituting the shell layer of CS particles including the core layer made of butadiene rubber is the same as in Example 1 except that allyl methacrylate is not used.
  • a copolymer having a glass transition temperature of 91.6 ° C. was formed by copolymerization of methyl acrylate and butyl acrylate.
  • the non-crosslinked acrylic copolymer constituting the shell layer of CS particles including the core layer composed of styrene-butadiene rubber does not use allyl methacrylate, and uses styrene instead of butyl acrylate. Except that, a copolymer having a glass transition temperature of 104.7 ° C. was formed by copolymerization of methyl methacrylate and styrene in the same manner as in Example 1 described above.
  • an uncrosslinked acrylic copolymer constituting the shell layer of CS particles including a core layer made of silicon rubber is also a copolymer of methyl methacrylate and butyl acrylate, or methacrylic acid.
  • FIG. 9 shows the blending of the thermoplastic polyurethane resin composition and the conductor coating material and the results of the flame retardancy test for each of Examples 5-1 to 5-12, as in FIG. 5A described above.
  • CS-BR indicates CS particles including a core layer of butadiene rubber
  • CS-SBR indicates CS particles including a core layer of styrene butadiene rubber
  • CS-SiR “Denotes CS particles comprising a core layer of silicon rubber.
  • the numbers attached to the right side of “CS-BR”, “CS-SBR” and “CS-SiR” indicate the weight percentage of the core layer of CS particles. That is, for example, “CS-SBR70” indicates CS particles containing 70% by weight of a core layer of styrene butadiene rubber.
  • the test piece did not burn out.
  • the first flame extinguishing time was as short as 0 to 3 seconds.
  • the case where the CS particles including the acrylic rubber core layer are used is compared to the case where the CS particles including the styrene butadiene rubber core layer is used, High flame retardancy was shown.
  • thermoplastic polyurethane resin composition (resin raw material)
  • TPU an adipate TPU having a flow starting point of 180 ° C.
  • Trixylenyl phosphate was used as a phosphate ester flame retardant.
  • CS particles were not used, and resin particles having no core-shell structure were used instead. That is, commercially available PMMA (polymethyl methacrylate) particles, NBR (acrylonitrile butadiene rubber) particles, EVA (ethylene-vinyl acetate copolymer) particles or EEA (ethylene-ethyl acrylate copolymer) particles were used. .
  • PMMA polymethyl methacrylate
  • NBR acrylonitrile butadiene rubber
  • EVA ethylene-vinyl acetate copolymer particles
  • EEA ethylene-ethyl acrylate copolymer
  • FIG. 10 shows the blending of the thermoplastic polyurethane resin composition and the conductor coating material and the results of the flame retardancy test for each of Examples 6-1 to 6-4, as in FIG. 5A described above. .
  • the test piece drip occurred in the first test. That is, when the thermoplastic polyurethane resin composition and the conductor coating material contain resin particles not having a core-shell structure and no CS particles as in Example 6-1 to Example 6-4, the thermoplastic polyurethane system The flame retardancy of the resin composition and the conductor coating material was extremely low.
  • thermoplastic polyurethane resin composition (resin raw material)
  • TPU an adipate TPU having a flow starting point of 180 ° C.
  • Seven types of commercially available phosphate esters having different chemical structures were used as the phosphate ester flame retardant.
  • CS particles core-shell rubber particles containing 89% by weight of a core layer composed of acrylic rubber and 11% by weight of a shell layer composed of an acrylic copolymer having a degree of crosslinking of 0.50% were used. That is, as the CS particles, those composed of one core layer and one shell layer were used.
  • thermoplastic polyurethane resin compositions (resin raw materials) were produced in the same manner as in Example 1 described above.
  • FIG. 11 shows the blending of the thermoplastic polyurethane resin composition and the conductor coating material and the results of the flame retardancy test for each of Examples 7-1 to 7-7, as in FIG. 5A described above. .
  • the result of the above-mentioned Example 1-9 which uses trixylenyl phosphate as a phosphate ester type flame retardant is shown as Example 7-1.
  • Example 7-1 the result of the above-mentioned Example 1-9 which uses trixylenyl phosphate as a phosphate ester type flame retardant.
  • PE-I represents trixylenyl phosphate
  • PE-II represents tricresyl phosphate
  • PE-III represents triphenyl phosphate
  • PE-IV Represents (1,3-phenylenedioxy) bis (diphenyl phosphonate)
  • PE-V represents cresyl di-2,6-xylenyl phosphate
  • PE-VI represents a phosphorus atom and oxygen Indicates a condensed phosphate ester containing a heterocycle containing an atom
  • PE-VII indicates triethyl phosphate
  • PE-IX indicates an aromatic condensed phosphate ester containing four xylenyl groups in the molecule.
  • any of Examples 7-1 to 7-7 a conductor coating material exhibiting excellent flame retardancy was obtained. That is, it was confirmed that any of the phosphate esters used in Examples 7-1 to 7-7 can be used as a phosphate ester flame retardant.
  • the first flame-out time is “A”
  • the second flame-out time is “A”.
  • “B” or “C” the thermoplastic polyurethane resin composition and the conductor coating material body exhibited extremely excellent flame retardancy.
  • thermoplastic polyurethane resin composition (resin raw material)
  • TPUs Trixylenyl phosphate was used as a phosphate ester flame retardant.
  • CS particles core-shell rubber particles containing 89% by weight of a core layer composed of acrylic rubber and 11% by weight of a shell layer composed of an acrylic copolymer having a degree of crosslinking of 0.50% were used. That is, as the CS particles, those composed of one core layer and one shell layer were used.
  • FIG. 12 shows the blending of the thermoplastic polyurethane resin composition and the conductor coating material and the results of the flame retardancy test for each of Examples 8-1 to 8-7, as in FIG. 5A described above. .
  • FIG. 12 shows the result of Example 1-9 described above using, as Example 8-1, an adipate-based TPU having a flow start point of 180 ° C. as TPU.
  • TPU-I indicates a polyester-based (adipate-based) TPU having a flow start point of 180 ° C.
  • TPU-II indicates a polyester-based (adipate-based) having a flow start point of 160 ° C.
  • TPU-III indicates a polyester-based (caprolactone-based) TPU having a flow start point of 190 ° C.
  • TPU-IV indicates a polycarbonate-based TPU having a flow start point of 184 ° C.
  • TPU-V indicates a polyether-based TPU having a flow starting point of 190 ° C.
  • Example 8-1 using a polyester (adipate) TPU having a flow start point of 180 ° C., compared to Example 8-2 using a polyester (adipate) TPU having a flow start point of 160 ° C. High flame retardancy was obtained. Further, Example 8-1 using a polyester (adipate) TPU having a flow start point of 180 ° C. is higher than Example 8-6 using a polyether TPU having a flow start point of 190 ° C. Flame retardancy was obtained.
  • thermoplastic polyurethane resin composition (resin raw material)
  • TPU thermoplastic polyurethane resin composition
  • an adipate TPU having a flow starting point of 180 ° C. was used.
  • Trixylenyl phosphate was used as a phosphate ester flame retardant.
  • CS particles various types having different core layer content (% by weight) and / or shell layer cross-linking degree (%) were synthesized and used.
  • the degree of crosslinking of the shell layer of CS particles was adjusted by the ratio of methyl methacrylate, butyl acrylate and allyl methacrylate used for forming the shell layer in the method for producing CS particles in Example 1 described above.
  • the degree of cross-linking of the shell layer is 0 (zero) (%)
  • the non-cross-linked acrylic copolymer constituting the shell layer of CS particles is the same as in Example 1 except that allyl methacrylate is not used. And formed by copolymerization of methyl methacrylate and butyl acrylate.
  • thermoplastic polyurethane containing 100 parts by weight of a resin component composed of 65 parts by weight of TPU, 35 parts by weight of CS particles, and 45 parts by weight of PE flame retardant.
  • -Based resin composition (resin raw material) was produced.
  • a conductor coating material was manufactured in the same manner as in Example 1 described above.
  • FIG. 13 shows the examples of the thermoplastic polyurethane resin composition and the conductor coating material for various examples in which the content (% by weight) of the core layer of CS particles used and / or the degree of crosslinking (%) of the shell layer are different. The result of a flame retardance test and the result of measuring the Shore A hardness of CS particles are shown.
  • each column shows the flame extinction time and rank in the flame retardancy test
  • the lower part shows the Shore A hardness of the CS particles. That is, for example, in the case of using CS particles composed of a core layer of 89.0% by weight and 11.0% by weight of a shell layer having a cross-linking degree of 0.50%, the content of the core layer is “ In the column of “89.0 wt%” and the degree of cross-linking of the shell layer is “0.50%”, the first flame-out time in the flame retardancy test is 0 (zero) seconds, the rank is “A”, and the second time The flame extinguishing time was 57 seconds and the rank was C as “A (0) / C (57)”, and the CS particle had a Shore A hardness of 67. "Is shown in the lower row.
  • the core layer content of the CS particles is 60.0 wt% as shown in Example 3 above.
  • % In the range of 82.0% by weight or less, the Shore A hardness of the CS particles is 85 or more and 90 or less.
  • the first flame extinguishing time is rank “A” and the second flame extinguishing. The time was rank "C", and the thermoplastic polyurethane resin composition and the conductor coating material exhibited extremely excellent flame retardancy.
  • the CS particle core layer content is 85.0% by weight.
  • the first flame extinguishing time was rank “A” and the second flame extinguishing time was rank “B”, and the thermoplastic polyurethane resin composition and the conductor coating material showed extremely excellent flame retardancy.
  • the first flame-out time in the flame retardancy test is ranked “A” when the core layer content of the CS particles is 89.0% by weight.
  • the second flame extinguishing time was rank “C”, and the thermoplastic polyurethane resin composition and the conductor coating material exhibited extremely excellent flame retardancy.
  • thermoplastic polyurethane resin composition and the conductor coating material exhibited extremely excellent flame retardancy.
  • the first flame-out time in the flame retardancy test is ranked “A” when the core layer content of the CS particles is 52.0% by weight.
  • the second flame extinguishing time was rank “B”, and the thermoplastic polyurethane resin composition and the conductor coating material exhibited extremely excellent flame retardancy.
  • the first flame-out time in the flame retardancy test is ranked “A” when the CS particle core layer content is 50.0% by weight.
  • the second flame extinguishing time was rank “C”, and the thermoplastic polyurethane resin composition and the conductor coating material exhibited extremely excellent flame retardancy.
  • thermoplastic polyurethane resin composition (resin raw material)
  • TPU an adipate TPU having a flow starting point of 180 ° C.
  • Trixylenyl phosphate was used as a phosphate ester flame retardant.
  • CS particles CS particles composed of 75.0% by weight of a core layer composed of acrylic rubber and one shell layer composed of an uncrosslinked acrylic copolymer were used.
  • thermoplastic polyurethane resin compositions (resin raw materials) having different compositions were produced.
  • FIG. 14 shows the composition of the conductor coating material and the results of the flame retardancy test for each of Examples 10-1 to 10-10, as in FIG. 5A described above.
  • thermoplastic polyurethane resin composition and the conductor coating material are 60.0 parts by weight or more and 70.0 parts by weight or less of TPU, and 30.0 parts by weight or more and 40.0 parts by weight.
  • the first flame-out time in the flame retardancy test was ranked “ A ”and the second flame extinguishing time was rank“ C ”, and the thermoplastic polyurethane resin composition and conductor coating material exhibited extremely excellent flame retardancy.
  • thermoplastic polyurethane resin composition (resin raw material)
  • TPU thermoplastic polyurethane resin composition
  • an adipate TPU having a flow starting point of 180 ° C. was used.
  • Trixylenyl phosphate was used as a phosphate ester flame retardant.
  • CS particles composed of 75.0% by weight of a core layer composed of acrylic rubber and 25.0% by weight of a shell layer composed of an uncrosslinked acrylic copolymer as CS particles It was used.
  • thermoplastic polyurethane resin compositions resin raw materials having different compositions were produced as these mixtures.
  • FIG. 15 shows the composition of the conductor coating material and the results of the flame retardancy test for each of Examples 11-1 to 11-7, as in FIG. 5A described above.
  • thermoplastic polyurethane-based resin composition and the conductor coating material have a PE difficulty of 41 parts by weight or more and 85 parts by weight or less with respect to 100 parts by weight of the resin component composed of TPU and CS particles.
  • the first flame-out time in the flame retardancy test is rank “A”
  • the second flame-out time is rank “A” or “C”.
  • the plastic polyurethane resin composition and the conductor coating material exhibited extremely excellent flame retardancy.

Abstract

 優れた難燃性を達成する熱可塑性ポリウレタン系樹脂組成物、優れた特性を有する導体被覆材及びこれらの製造方法を提供する。本発明の一実施形態に係る熱可塑性ポリウレタン系樹脂組成物及び導体被覆材(20)は、58.1重量部以上、73.9重量部以下の熱可塑性ポリウレタン系樹脂と、26.1重量部以上、41.9重量部以下のコアシェル重合体粒子とからなる100重量部の樹脂成分と、42重量部以上、87重量部以下のリン酸エステル系難燃剤と、を含む。

Description

熱可塑性ポリウレタン系樹脂組成物、導体被覆材及びこれらの製造方法
 本発明は、熱可塑性ポリウレタン系樹脂組成物、導体被覆材及びこれらの製造方法に関し、特に、熱可塑性ポリウレタン系樹脂組成物の難燃性の向上、及び導体被覆材の特性の向上に関する。
 特許文献1には、熱可塑性ポリウレタン系エラストマーと、エチレン重合体及び/又はエチレン系共重合体とを主成分として含み、さらに特定の二種類の(ポリ)リン酸塩化合物と、特定のリン酸エステル化合物とを含む難燃性熱可塑性樹脂組成物が記載されている。
 特許文献2には、窒素-リン系難燃剤を用いて難燃加工した基布の少なくとも片面に、熱可塑性ポリウレタン系樹脂層を設けてなる難燃性合成樹脂レザーが記載されている。この特許文献2の段落0014には、熱可塑性ポリウレタン系樹脂は、単独でも使用できるが、アクリル系軟質樹脂と併用するのが好ましいこと、熱可塑性ポリウレタン系樹脂に特定の軟質アクリル樹脂を混合すると、熱可塑性ポリウレタン系樹脂の難燃性を悪化させずに、軟化させることが可能となること、及びショアA硬度65~90の熱可塑性ポリウレタンに、ショアA硬度50~80のアクリル系軟質樹脂を混合することによって、難燃性を悪化させずに、ショアA硬度が60~80の混合樹脂を得ることができることが記載され、段落0018には、アクリル系軟質樹脂は、多層構造重合体、すなわち2種以上のアクリル系重合体がコア-シェル型の多層構造を形成している粒子状の重合体が好ましいことが記載され、段落0034には、実施例においてアクリル系軟質樹脂としてクラレ社製のSA-1000P(アクリル系軟質樹脂、ショアA硬度70)を使用したことが記載されている。ただし、特許文献2において、熱可塑性ポリウレタン系樹脂層は、上述のとおり、あくまでも難燃性合成樹脂レザーの一部として、窒素-リン系難燃剤を用いて難燃加工した基布の少なくとも片面に設けられるものである。
 特許文献3には、導体の外周に絶縁層を有する絶縁電線を複数撚り合わせた多芯撚線の外側に内層を設け、その内層に外層を設けたケーブルにおいて、当該外層が、熱可塑性ポリウレタン(TPU)100質量部に対して難燃剤を30質量部以上含有する樹脂組成物からなり、当該内層が、酢酸成分(VA)量33%以上のエチレン酢酸ビニル共重合体(EVA)からなる樹脂組成物からなり、当該外層が架橋処理されてなるノンハロゲン難燃性ケーブルが記載されている。
特開2010-037393号公報 特開2005-015942号公報 特開2011-150896号公報
 しかしながら、従来の熱可塑性ポリウレタン系樹脂組成物の難燃性は、必ずしも十分なものではなかった。また、従来の導体被覆材の特性は、必ずしも十分なものではなかった。
 本発明は、上記課題に鑑みて為されたものであり、優れた難燃性を達成する熱可塑性ポリウレタン系樹脂組成物、優れた特性を有する導体被覆材及びこれらの製造方法を提供することを目的の一つとする。
 上記課題を解決するための本発明の一実施形態に係る熱可塑性ポリウレタン系樹脂組成物は、58.1重量部以上、73.9重量部以下の熱可塑性ポリウレタン系樹脂と、26.1重量部以上、41.9重量部以下のコアシェル重合体粒子とからなる100重量部の樹脂成分と、42重量部以上、87重量部以下のリン酸エステル系難燃剤と、を含むことを特徴とする。本発明によれば、優れた難燃性を達成する熱可塑性ポリウレタン系樹脂組成物を提供することができる。
 また、前記熱可塑性ポリウレタン系樹脂組成物において、前記コアシェル重合体粒子は、1以上のコア層と1以上のシェル層とから構成され、前記コア層は、ガラス転移温度が40℃未満の重合体から構成される最外コア層を含み、前記シェル層は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、多官能性単量体とを含む原料の重合により得られる共重合体であってガラス転移温度が40℃以上の共重合体から構成される架橋シェル層を含み、前記コアシェル重合体粒子は、下記(a)~(d):(a)前記コア層と前記シェル層との合計100重量%に対して、50.1重量%以上、88.9重量%以下の前記コア層を含み、前記架橋シェル層の架橋度が0.05%以上、0.42%以下であるコアシェル重合体粒子;、(b)前記コア層と前記シェル層との合計100重量%に対して、50.1重量%以上、89.4重量%以下の前記コア層を含み、前記架橋シェル層の架橋度が0.42%超、0.45%以下であるコアシェル重合体粒子;、(c)前記コア層と前記シェル層との合計100重量%に対して、50.1重量%以上、90.4重量%以下の前記コア層を含み、前記架橋シェル層の架橋度が0.45%超、0.50%以下であるコアシェル重合体粒子;及び(d)前記コア層と前記シェル層との合計100重量%に対して、40.1重量%以上、90.4重量%以下の前記コア層を含み、前記架橋シェル層の架橋度が0.50%超、5.00%以下であるコアシェル重合体粒子;からなる群より選択される1種以上であることとしてもよい。この場合、前記コアシェル重合体粒子は、少なくとも前記(a)を含むこととしてもよい。また、前記コアシェル重合体粒子は、少なくとも前記(b)を含むこととしてもよい。また、前記コアシェル重合体粒子は、少なくとも前記(c)を含むこととしてもよい。また、前記コアシェル重合体粒子は、少なくとも前記(d)を含むこととしてもよい。また、これらの場合、前記架橋シェル層を構成する前記共重合体は、前記(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、前記多官能性単量体と、これらと共重合可能な不飽和単量体との共重合体であることとしてもよい。さらに、これらの場合、前記熱可塑性ポリウレタン系樹脂組成物は、59.1重量部以上、73.9重量部以下の前記熱可塑性ポリウレタン系樹脂と、26.1重量部以上、40.9重量部以下の前記コアシェル重合体粒子とからなる100重量部の前記樹脂成分と、42重量部以上、87重量部以下の前記リン酸エステル系難燃剤と、を含むこととしてもよい。
 また、前記熱可塑性ポリウレタン系樹脂組成物は、58.1重量部以上、73.9重量部以下の熱可塑性ポリウレタン系樹脂と、26.1重量部以上、41.9重量部以下のコアシェル重合体粒子とからなる100重量部の樹脂成分と、42重量部以上、87重量部以下のリン酸エステル系難燃剤と、を含み、前記コアシェル重合体粒子は、1以上のコア層と1以上のシェル層とから構成され、前記コア層と前記シェル層との合計100重量%に対して、57.1重量%以上、82.0重量%以下の前記コア層を含むこととしてもよい。この場合、前記コアシェル重合体粒子の、JIS K 6253-3:2012に準拠した方法であって、試験機としてタイプAデュロメータを使用し、自動タイマ装置を使用せず、厚さ1.0mm以上、1.5mm以下のシート(30mm×40mm)を6枚積み重ねて得られる積層体を試験片として使用し、前記試験片を温度23℃、相対湿度50%で24時間以上状態調節した後、温度23℃及び相対湿度50%にて、加圧板を前記試験片に接触させてから10秒後の測定値を読み取る方法にて測定されるショアA硬度は、81以上、100以下であることとしてもよい。また、これらの場合、前記1以上のシェル層は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上を含む原料の重合により得られる重合体であってガラス転移温度が40℃以上の重合体から構成されることとしてもよい。また、この場合、前記熱可塑性ポリウレタン系樹脂組成物は、58.6重量部以上、73.4重量部以下の前記熱可塑性ポリウレタン系樹脂と、26.6重量部以上、41.4重量部以下の前記コアシェル重合体粒子とからなる100重量部の前記樹脂成分と、41重量部以上、87重量部以下の前記リン酸エステル系難燃剤と、を含むこととしてもよい。また、これらの場合、前記1以上のシェル層を構成する前記重合体は、前記(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、これと共重合可能な不飽和単量体との共重合体であることとしてもよい。
 また、前記熱可塑性ポリウレタン系樹脂組成物は、導体被覆材用熱可塑性ポリウレタン系樹脂組成物であることとしてもよい。
 上記課題を解決するための本発明の一実施形態に係る熱可塑性ポリウレタン系樹脂組成物の製造方法は、58.1重量部以上、73.9重量部以下の熱可塑性ポリウレタン系樹脂と、26.1重量部以上、41.9重量部以下のコアシェル重合体粒子とからなる100重量部の樹脂成分と、42重量部以上、87重量部以下のリン酸エステル系難燃剤と、を混合することを含むことを特徴とする。本発明によれば、優れた難燃性を達成する熱可塑性ポリウレタン系樹脂組成物の製造方法を提供することができる。
 上記課題を解決するための本発明の一実施形態に係る導体被覆材は、58.1重量部以上、73.9重量部以下の熱可塑性ポリウレタン系樹脂と、26.1重量部以上、41.9重量部以下のコアシェル重合体粒子とからなる100重量部の樹脂成分と、42重量部以上、87重量部以下のリン酸エステル系難燃剤と、を含むことを特徴とする。本発明によれば、優れた特性を有する導体被覆材を提供することができる。
 また、前記導体被覆材において、前記コアシェル重合体粒子は、1以上のコア層と1以上のシェル層とから構成され、前記コア層は、ガラス転移温度が40℃未満の重合体から構成される最外コア層を含み、前記シェル層は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、多官能性単量体とを含む原料の重合により得られる共重合体であってガラス転移温度が40℃以上の共重合体から構成される架橋シェル層を含み、前記コアシェル重合体粒子は、下記(a)~(d):(a)前記コア層と前記シェル層との合計100重量%に対して、50.1重量%以上、88.9重量%以下の前記コア層を含み、前記架橋シェル層の架橋度が0.05%以上、0.42%以下であるコアシェル重合体粒子;、(b)前記コア層と前記シェル層との合計100重量%に対して、50.1重量%以上、89.4重量%以下の前記コア層を含み、前記架橋シェル層の架橋度が0.42%超、0.45%以下であるコアシェル重合体粒子;、(c)前記コア層と前記シェル層との合計100重量%に対して、50.1重量%以上、90.4重量%以下の前記コア層を含み、前記架橋シェル層の架橋度が0.45%超、0.50%以下であるコアシェル重合体粒子;及び(d)前記コア層と前記シェル層との合計100重量%に対して、40.1重量%以上、90.4重量%以下の前記コア層を含み、前記架橋シェル層の架橋度が0.50%超、5.00%以下であるコアシェル重合体粒子;からなる群より選択される1種以上であることとしてもよい。この場合、前記コアシェル重合体粒子は、少なくとも前記(a)を含むこととしてもよい。また、前記コアシェル重合体粒子は、少なくとも前記(b)を含むこととしてもよい。また、前記コアシェル重合体粒子は、少なくとも前記(c)を含むこととしてもよい。また、前記コアシェル重合体粒子は、少なくとも前記(d)を含むこととしてもよい。また、これらの場合、前記架橋シェル層を構成する前記共重合体は、前記(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、前記多官能性単量体と、これらと共重合可能な不飽和単量体との共重合体であることとしてもよい。さらに、これらの場合、前記導体被覆材は、59.1重量部以上、73.9重量部以下の前記熱可塑性ポリウレタン系樹脂と、26.1重量部以上、40.9重量部以下の前記コアシェル重合体粒子とからなる100重量部の前記樹脂成分と、42重量部以上、87重量部以下の前記リン酸エステル系難燃剤と、を含むこととしてもよい。
 また、前記導体被覆材は、58.1重量部以上、73.9重量部以下の熱可塑性ポリウレタン系樹脂と、26.1重量部以上、41.9重量部以下のコアシェル重合体粒子とからなる100重量部の樹脂成分と、42重量部以上、87重量部以下のリン酸エステル系難燃剤と、を含み、前記コアシェル重合体粒子は、1以上のコア層と1以上のシェル層とから構成され、前記コア層と前記シェル層との合計100重量%に対して、57.1重量%以上、82.0重量%以下の前記コア層を含むこととしてもよい。この場合、前記コアシェル重合体粒子の、JIS K 6253-3:2012に準拠した方法であって、試験機としてタイプAデュロメータを使用し、自動タイマ装置を使用せず、厚さ1.0mm以上、1.5mm以下のシート(30mm×40mm)を6枚積み重ねて得られる積層体を試験片として使用し、前記試験片を温度23℃、相対湿度50%で24時間以上状態調節した後、温度23℃及び相対湿度50%にて、加圧板を前記試験片に接触させてから10秒後の測定値を読み取る方法にて測定されるショアA硬度は、81以上、100以下であることとしてもよい。また、これらの場合、前記1以上のシェル層は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上を含む原料の重合により得られる重合体であってガラス転移温度が40℃以上の重合体から構成されることとしてもよい。また、この場合、前記導体被覆材は、58.6重量部以上、73.4重量部以下の前記熱可塑性ポリウレタン系樹脂と、26.6重量部以上、41.4重量部以下の前記コアシェル重合体粒子とからなる100重量部の前記樹脂成分と、41重量部以上、87重量部以下の前記リン酸エステル系難燃剤と、を含むこととしてもよい。また、これらの場合、前記1以上のシェル層を構成する前記重合体は、前記(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、これと共重合可能な不飽和単量体との共重合体であることとしてもよい。
 上記課題を解決するための本発明の一実施形態に係る導体被覆材の製造方法は、58.1重量部以上、73.9重量部以下の熱可塑性ポリウレタン系樹脂と、26.1重量部以上、41.9重量部以下のコアシェル重合体粒子とからなる100重量部の樹脂成分と、42重量部以上、87重量部以下のリン酸エステル系難燃剤と、を含む樹脂原料を成形することを含むことを特徴とする。本発明によれば、優れた特性を有する導体被覆材の製造方法を提供することができる。
 本発明によれば、優れた難燃性を達成する熱可塑性ポリウレタン系樹脂組成物、優れた特性を有する導体被覆材及びこれらの製造方法を提供することができる。
本発明の一実施形態に係る導体被覆材の一例について、その断面を示す説明図である。 本発明の一実施形態に係る導体被覆材の他の例について、その断面を示す説明図である。 本発明の一実施形態に係る導体被覆材のさらに他の例について、その断面を示す説明図である。 本発明の一実施形態に係る導体被覆材のさらに他の例について、その断面を示す説明図である。 本発明の一実施形態に係る実施例1における熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の配合(熱可塑性ポリウレタン系樹脂、リン酸エステル系難燃剤及びコアシェル重合体粒子の重量部)及び難燃性を示す説明図である。 本発明の一実施形態に係る実施例1における熱可塑性ポリウレタン系樹脂組成物及び導体被覆材体の配合(熱可塑性ポリウレタン系樹脂とリン酸エステル系難燃剤との合計100重量部に対するコアシェル重合体粒子の重量部)及び難燃性を示す説明図である。 本発明の一実施形態に係る実施例2における熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の配合及び難燃性を示す説明図である。 本発明の一実施形態に係る実施例3における熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の配合、難燃性及びショアA硬度を示す説明図である。 本発明の一実施形態に係る実施例4における熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の配合及び難燃性を示す説明図である。 本発明の一実施形態に係る実施例5における熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の配合及び難燃性を示す説明図である。 本発明の一実施形態に係る実施例6における熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の配合及び難燃性を示す説明図である。 本発明の一実施形態に係る実施例7における熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の配合及び難燃性を示す説明図である。 本発明の一実施形態に係る実施例8における熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の配合及び難燃性を示す説明図である。 本発明の一実施形態に係る実施例9における熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の難燃性及びショアA硬度を示す説明図である。 本発明の一実施形態に係る実施例10における熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の配合及び難燃性を示す説明図である。 本発明の一実施形態に係る実施例11における熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の配合及び難燃性を示す説明図である。
 以下に、本発明の一実施形態について説明する。なお、本発明は、本実施形態に限られるものではない。
 本実施形態に係る導体被覆材(本被覆材)は、導体を被覆する部材である。本被覆材に被覆される導体は、電気を伝導するための部材であれば特に限られない。導体は、例えば、金属導体であることとしてもよい。金属導体を構成する金属は、電気を伝導するものであれば特に限られず、例えば、銅、軟銅、ニッケルめっき軟銅、すずめっき軟銅、銀、アルミニウム、金、鉄、タングステン、モリブデン及びクロムからなる群より選択される1種以上であることとしてもよい。導体は、導線であることとしてもよい。この場合、導体は、金属導線であることとしてもよい。
 図1、図2、図3及び図4は、本被覆材の例について、その断面を示す説明図である。図1~図4に示す例において、本被覆材は、導線を被覆する導線被覆材である。より具体的に、図1~図4に示す例において、本被覆材は、電線1又はケーブル2の導線被覆材である。
 図1には、導体(導線)10と、当該導体10を被覆する被覆材20とを含む電線1を示す。図2には、複数の導線10a,10b,10cと、当該複数の導線10a,10b,10cをまとめて被覆する被覆材20とを含む電線1を示す。
 本被覆材は、図1及び図2に示すような電線1の被覆材20であることとしてもよい。電線1は、いわゆる絶縁電線であり、被覆材20は、当該絶縁電線の絶縁被覆材であることとしてもよい。本被覆材が導線を被覆する場合、本被覆材により被覆される当該導線の数は、図1及び図2に示すように、1つ以上であれば特に限られない。
 図3には、導体(導線)10と、当該導体10を被覆する第一の被覆材20と、当該第一の被覆材20を被覆する第二の被覆材30(当該第一の被覆材20を介して当該導体10を被覆する第二の被覆材30)とを含むケーブル2を示す。この場合、ケーブル2は、導体10と第一の被覆材20とを含む電線1と、当該電線1を被覆する第二の被覆材20とを含むこととしてもよい。
 本被覆材は、図3に示すようなケーブル2の被覆材20,30であることとしてもよい。すなわち、本被覆材は、図3に示す第一の被覆材20及び/又は第二の被覆材30であることとしてもよく、好ましくは当該第二の被覆材30であることとしてもよい。電線1は、絶縁電線であり、第一の被覆材20は、当該絶縁電線の絶縁被覆材であることとしてもよい。第二の被覆材30は、電線1を被覆する保護被覆材(いわゆるシース)であることとしてもよい。
 図4には、複数の導線10a,10b,10cと、当該複数の導線10a,10b,10cを被覆する複数の第一の被覆材20a,20b,20cと、当該複数の第一の被覆材20a,20b,20cを被覆する第二の被覆材40(当該複数の第一の被覆材20a,20b,20cを介して当該複数の導線10a,10b,10cを被覆する第二の被覆材40)と、当該第二の被覆材40を被覆する第三の被覆材50(当該複数の第一の被覆材20a,20b,20c及び第二の被覆材40を介して当該複数の導線10a,10b,10cを被覆する第三の被覆材50)とを含むケーブル2を示す。この場合、ケーブル2は、導体10aと第一の被覆材20aとを含む電線1aと、導体10bと第一の被覆材20bとを含む電線1bと、導体10cと第一の被覆材20cとを含む電線1cと、当該複数の電線1a,1b,1cをまとめて被覆する第二の被覆材20とを含むこととしてもよい。
 本被覆材は、図4に示すようなケーブル2の被覆材20a,20b,20c,40,50であることとしてもよい。すなわち、本被覆材は、図4に示す第一の被覆材20a,20b,20c、第二の被覆材40及び第三の被覆材50からなる群より選択される1つ以上であることとしてもよい。本被覆材がケーブル2の被覆材である場合、本被覆材により被覆される導線の数は、図3及び図4に示すように、1つ以上であれば特に限られない。複数の電線1a,1b,1cは、絶縁電線であり、第一の被覆材20は、当該絶縁電線の絶縁被覆材であることとしてもよい。第二の被覆材40及び第三の被覆材50は、電線1を被覆する保護被覆材(いわゆるシース)であることとしてもよい。
 本被覆材が上述したような電線又はケーブルの被覆材である場合、当該電線及びケーブルは、例えば、電力供給用の電線又はケーブル、通信用の電線又はケーブル、及び電気機器用の電線又はケーブル(例えば、家電製品部品、電気部品、電子部品又は自動車部品の配線、プラグ及びコネクターからなる群より選択される1つ以上)からなる群より選択されることとしてもよい。
 本被覆材は、熱可塑性ポリウレタン系樹脂(本明細書において「TPU」という。)と、リン酸エステル系難燃剤(本明細書において「PE難燃剤」という。)と、コアシェル重合体粒子(本明細書において「CS粒子」という。)とを含む。
 本被覆材は、TPUと、PE難燃剤と、CS粒子とを含む樹脂原料を成形することを含む方法により製造される。本被覆材の製造に使用される樹脂原料は、導体被覆材成形用樹脂原料である。
 本実施形態に係る熱可塑性ポリウレタン系樹脂組成物(本組成物)は、熱可塑性ポリウレタン系樹脂(TPU)と、リン酸エステル系難燃剤(PE難燃剤)と、コアシェル重合体粒子(CS粒子)とを含む。上述の本被覆材は、樹脂原料として本組成物を使用して製造される。すなわち、本組成物は、導体被覆材用熱可塑性ポリウレタン系樹脂組成物であってもよい。したがって、本実施形態には、導体被覆材の製造における本組成物の使用、本組成物を導体被覆材の製造に使用する方法、及び本組成物を使用して導体被覆材を製造する方法(より具体的には、本組成物を成形して導体被覆材を製造する方法)が含まれる。
 本発明の発明者らは、TPU及びPE難燃剤を含む熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の難燃性を向上させる技術的手段について鋭意検討を重ねた結果、意外にも、CS粒子が、当該組成物及び導体被覆材に高い難燃性を付与することを独自に見出し、本発明を完成するに至った。
 そこで、本組成物及び本被覆材は、TPU及びPE難燃剤を含む本組成物及び導体被覆材であって、さらにCS粒子を難燃剤として含む。すなわち、CS粒子は、本組成物及び本被覆材において難燃性を示す成分である。このため、本実施形態は、TPUとPE難燃剤とを含む熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の難燃剤として、CS粒子を使用する方法を含む。
 また、本発明の発明者らは、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の難燃性を向上させる技術的手段について鋭意検討を重ねた結果、意外にも、TPU及びPE難燃剤を含む当該熱可塑性ポリウレタン系樹脂組成物及び導体被覆材に対して、特定範囲の量のCS粒子を添加することにより、特に高い難燃性を達成できることを独自に見出し、本発明を完成するに至った。
 そこで、本組成物及び本被覆材は、58.1重量部以上、73.9重量部以下のTPUと、26.1重量部以上、41.9重量部以下のCS粒子とからなる100重量部の樹脂成分と、42重量部以上、87重量部以下のPE難燃剤と、を含むこととしてもよい。
 また、本組成物及び本被覆材は、TPUとPE難燃剤との合計100重量部に対し、21.9重量部以上、40.7重量部以下のCS粒子からなる難燃剤を含むこととしてもよい。この場合、本被覆材は、TPU100重量部に対し63.2重量部以上、135.3重量部以下のPE難燃剤と、当該TPUと当該PE難燃剤との合計100重量部に対し、23.0重量部以上、40.7重量部以下のCS粒子からなる難燃剤とを含むこととしてもよい。
 また、本組成物及び本被覆材は、59.1重量部以上、73.9重量部以下のTPUと、26.1重量部以上、40.9重量部以下のCS粒子とからなる100重量部の樹脂成分と、42重量部以上、87重量部以下のPE難燃剤と、を含むこととしてもよい。この場合、本組成物及び本被覆材は、極めて優れた難燃性を示す。
 また、上記樹脂成分100重量部は、59.2重量部以上、73.7重量部以下のTPUを含むことが好ましく、59.5重量部以上、73.5重量部以下のTPUを含むことがより好ましい。これらの場合、本組成物及び本被覆材は、さらに優れた難燃性を示す。
 また、上記樹脂成分100重量部は、26.2重量部以上、40.7重量部以下のCS粒子を含むことが好ましく、26.5重量部以上、40.5重量部以下のCS粒子を含むことがより好ましい。これらの場合、本組成物及び本被覆材は、さらに優れた難燃性を示す。
 より具体的に、上記樹脂成分100重量部は、59.2重量部以上、73.7重量部以下のTPUと、26.2重量部以上、40.7重量部以下のCS粒子とから構成されることが好ましく、59.5重量部以上、73.5重量部以下のTPUと、26.5重量部以上、40.5重量部以下のCS粒子とから構成されることがより好ましい。これらの場合、本組成物及び本被覆材は、さらに優れた難燃性を示す。
 また、本組成物及び本被覆材は、上記樹脂成分100重量部と、42重量部以上、87重量部以下のPE難燃剤を含むことが好ましく、43重量部以上、85重量部以下のPE難燃剤を含むことがより好ましい。これらの場合、本組成物及び本被覆材は、さらに優れた難燃性を示す。
 より具体的に、本組成物及び本被覆材は、59.2重量部以上、73.7重量部以下のTPUと、26.2重量部以上、40.7重量部以下のCS粒子とからなる100重量部の樹脂成分と、42重量部以上、87重量部以下のPE難燃剤と、を含むこととしてもよい。この場合、本組成物及び本被覆材は、さらに優れた難燃性を示す。
 さらに、本組成物及び本被覆材は、59.5重量部以上、73.5重量部以下のTPUと、26.5重量部以上、40.5重量部以下のCS粒子とからなる100重量部の樹脂成分と、43重量部以上、85重量部以下のPE難燃剤と、を含むこととしてもよい。この場合、本組成物及び本被覆材は、特に優れた難燃性を示す。
 なお、本組成物及び本被覆材は、TPU、CS粒子及びPE難燃剤以外に、さらに他の成分を含んでもよい。また、本実施形態において、「樹脂成分」は、TPUとCS粒子とから構成される。本組成物及び本被覆材は、上記「樹脂成分」以外に、樹脂を含んでもよい。ただし、本組成物及び本被覆材は、樹脂として、TPUとCS粒子とから構成される上記「樹脂成分」のみを含むことが好ましい。
 本組成物及び本被覆材に含まれるTPUは、ポリイソシアネートとポリオールとの反応により合成される、熱可塑性を有するポリウレタン系樹脂であれば特に限られない。TPUの種類は特に限られないが、ポリエステル系TPU、ポリエーテル系TPU及びポリカーボネート系TPUからなる群より選択される1種以上であることとしてもよく、より具体的には、アジペート系TPU、カプロラクトン系TPU、ポリエーテル系TPU及びポリカーボネート系TPUからなる群より選択される1種以上であることとしてもよい。TPUとしては、後述の点から、ポリエステル系TPUが最も好ましく、次いで、ポリカーボネート系TPUが好ましい。
 本組成物及び本被覆材は、ポリエステル系TPUを含むこととしてもよい。本組成物及び本被覆材がポリエステル系TPU(アジペート系TPU及び/又はカプロラクトン系TPU)を含む場合、本組成物及び本被覆材は、優れた難燃性に加え、優れた耐熱性をも有することとなる。
 この場合、本被覆材は、例えば、所定温度で所定時間(例えば、136℃で168時間)加熱された後においても、優れた引張伸び特性を維持する。具体的に、例えば、所定温度で所定時間(例えば、136℃で168時間)加熱された後の引張伸び特性については、ポリエステル系TPUを含む本組成物の試験片及び本被覆材は、ポリエーテル系TPUを含む本組成物の試験片及び本被覆材に比べて顕著に優れている。また、例えば、ポリエステル系TPUを含む本組成物及び本被覆材の耐熱性は、ポリカーボネート系TPUを含む本組成物及び本被覆材より優れている。特に、本組成物及び本被覆材が、アジペート系TPUを含む場合、本組成物及び本被覆材は、極めて高度な難燃性と、上述の優れた耐熱性とを兼ね備えることとなる。また、ポリエステル系TPUを含む本組成物、及び本被覆材の樹脂原料の加工性は、ポリカーボネート系TPUを含む本組成物及び当該樹脂原料及びポリエーテル系TPUを含む本組成物及び当該樹脂原料より優れている。
 本組成物及び本被覆材は、ポリカーボネート系TPUを含むこととしてもよい。本組成物及び本被覆材がポリカーボネート系TPUを含む場合、本組成物及び本被覆材は、優れた難燃性に加え、優れた耐熱性をも有することとなる。すなわち、この場合、本組成物の試験片及び本被覆材は、例えば、所定温度で所定時間(例えば、136℃で168時間)加熱された後においても、優れた引張伸び特性を維持する。具体的に、例えば、所定温度で所定時間(例えば、136℃で168時間)加熱された後の引張伸び特性については、ポリカーボネート系TPUを含む本組成物の試験片及び本被覆材は、ポリエーテル系TPUを含む本組成物の試験片及び本被覆材に比べて顕著に優れている。
 本組成物及び本被覆材は、ポリエーテル系TPUを含むこととしてもよい。本組成物及び本被覆材がポリエーテル系TPUを含む場合においても、本組成物及び本被覆材は、優れた難燃性を有する。
 TPUは、155℃以上の流動開始点を有するTPUであることとしてもよい。TPUの流動開始点は、155℃以上であれば特に限られないが、例えば、160℃以上であってもよく、170℃以上であることが好ましく、175℃以上であることがより好ましく、180℃以上であることが特に好ましい。TPUの流動開始点が175℃以上である場合、特に180℃以上である場合、当該TPUを含む本組成物及び本被覆材は、優れた難燃性に加え、優れた耐熱性を有することとなる。
 すなわち、本組成物及び本被覆材は、155℃以上、160℃以上、170℃以上、175℃以上又は180℃以上の流動開始点を有するポリエステル系TPUを含むこととしてもよく、155℃以上、160℃以上、170℃以上、175℃以上又は180℃以上の流動開始点を有するアジペート系TPUを含むこととしてもよく、155℃以上、160℃以上、170℃以上、175℃以上又は180℃以上の流動開始点を有するカプロラクトン系TPUを含むこととしてもよく、155℃以上、160℃以上、170℃以上、175℃以上又は180℃以上の流動開始点を有するポリカーボネート系TPUを含むこととしてもよく、155℃以上、160℃以上、170℃以上、175℃以上又は180℃以上の流動開始点を有するポリエーテル系TPUを含むこととしてもよい。
 本組成物及び本被覆材に含まれるTPUの量は特に限られないが、本組成物及び本被覆材は、例えば、30~60重量%のTPUを含むこととしてもよく、30~55重量%のTPUを含むことが好ましく、35~55重量%のTPUを含むことがより好ましい。
 CS粒子は、上述のとおり、TPUを含む熱可塑性ポリウレタン系樹脂組成物及び導体被覆材において、また、TPUとPE難燃剤とを含む熱可塑性ポリウレタン系樹脂組成物及び導体被覆材において、難燃性を示す。すなわち、CS粒子は、例えば、下記のような難燃性試験において、TPUとPE難燃剤と当該CS粒子とを含む熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の試験片の消炎時間を、当該TPUと当該PE難燃剤とを含み当該CS粒子を含まない熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の試験片の消炎時間より低減させるようなCS粒子である。
 上記難燃性試験は、熱可塑性ポリウレタン系樹脂組成物から製造したシート又は導体被覆材のシートを打抜刃にて打ち抜いて作製した試験片(125mm×13mm×3mm)と、UL燃焼試験機であるHVUL試験機(アトラス社製)とを用いて、次のようにして行う。(1)まず上記試験片の長手方向の一方端が上側に、他方端が下側となるよう、当該試験片の上端をクランプに固定することにより、当該試験片を垂直に吊り下げる。(2)次いで、20mmのバーナー炎を用意し、当該バーナー炎の上部10mmを当該試験片の下端の中心部に10秒間接触させる。(3)その後、当該バーナー炎を当該試験片から離した時点から、当該試験片の炎が消えるまでの時間(消炎時間)を測定する。なお、接炎処理の終了後、試験片が全く燃えなかった場合、消炎時間はゼロ秒とする。また、試験片のドリップが発生する場合、及び試験片が燃え尽きる場合には、消炎時間は測定できない。
 CS粒子は、コアシェル構造を有する重合体粒子である。すなわち、CS粒子は、1以上のコア層と、1以上のシェル層とを含む。CS粒子が2以上のコア層を含む場合、当該2以上のコア層を構成する重合体は、互いに組成が異なることとしてもよい。また、CS粒子が2以上のシェル層を含む場合、当該2以上のシェル層を構成する重合体は、互いに組成が異なることとしてもよい。
 CS粒子の一次粒子の体積平均粒子径は、例えば、10~10000nmであってもよく、50~1000nmであることが好ましい。ここで、CS粒子の一次粒子の体積平均粒子径は、当該CS粒子のラテックスの体積平均粒子径である。CS粒子の一次粒子の体積平均粒子径は、レーザー回折法により測定され、例えば、MICROTRAC UPA150(登録商標)(日機装株式会社製)を使用して測定される。
 CS粒子は、乳化重合法、分散重合法、マイクロ懸濁重合法又は懸濁重合法により製造され、好ましくは乳化重合法により製造される。
 コア層は、重合体から構成される粒子(重合体粒子)である。コア層は、架橋重合体から構成される粒子であることとしてもよい。この場合、コア層は、架橋ゴムから構成される粒子であることとしてもよい。
 CS粒子は、上述のとおり、1以上のコア層を含む。すなわち、CS粒子は、1つのコア層を含むこととしてもよく、2以上のコア層を含むこととしてもよいが、当該1つのコア層を含む(CS粒子が、1以上のシェル層と、1つのコア層とから構成される、又は1つのシェル層と、1つのコア層とから構成される)ことが好ましい。
 コア層は、ガラス転移温度(Tg)が40℃未満の重合体から構成される最外コア層を含む。すなわち、CS粒子が、1つのコア層を含む(CS粒子のコア層が、1つのコア層から構成される)場合には、当該1つのコア層は、最外コア層であり、ガラス転移温度が40℃未満の重合体から構成される。
 一方、CS粒子が、2以上のコア層を含む場合、当該2以上のコア層は、CS粒子の最内層を構成する1つの最内コア層粒子と、当該最内コア層粒子を被覆する1以上の被覆コア層とから構成されることとしてもよい。
 すなわち、CS粒子が2つのコア層を含む場合、当該2つのコア層は、当該CS粒子の最内層を構成する1つの最内コア層粒子と、当該最内コア層粒子を被覆する1つの被覆コア層とから構成される。この場合、最内コア層粒子を被覆する1つの被覆コア層が最外コア層である。
 また、CS粒子が3以上のコア層を含む場合、当該3以上のコア層は、当該CS粒子の最内層を構成する1つの最内コア層粒子と、当該最内コア層粒子を被覆する2以上の被覆コア層とから構成される。この場合、2以上の被覆コア層のうち、CS粒子の径方向における最も外側の被覆コア層が、最外コア層である。すなわち、CS粒子が、1つの最内コア層粒子と、当該最内コア層粒子を被覆する第一の被覆コア層と、当該第一の被覆コア層を被覆する第二の被覆コア層とから構成される3つのコア層を含む場合、当該第二の被覆コア層が最外コア層である。
 なお、2以上のコア層は、最外コア層以外に、ガラス転移温度が40℃以上の重合体から構成される1以上のコア層を含んでもよい。すなわち、2以上のコア層は、ガラス転移温度が40℃未満の重合体から構成される最外コア層と、ガラス転移温度が40℃以上の重合体から構成される1以上のコア層及び/又はガラス転移温度が40℃未満の重合体から構成される1以上のコア層と、から構成されることとしてもよい。
 また、2以上のコア層は、2以上のコア層粒子を含んでもよい。すなわち、2以上のコア層は、2以上のコア層粒子から構成されてもよいし、当該2以上のコア層粒子と、当該2以上のコア層粒子を被覆する1以上の被覆コア層とから構成されてもよい。2以上のコア層が、2以上のコア層粒子から構成される場合、当該2以上のコア層粒子が最外コア層である。また、2以上のコア層が、2以上のコア層粒子と、当該2以上のコア層粒子を被覆する1以上の被覆コア層とから構成される場合、当該1以上の被覆コア層のうち、最外層を構成するコア層が、最外コア層である。ただし、CS粒子は、2以上ではなく、1つの最内コア層粒子を含むことが好ましい。
 最外コア層のガラス転移温度は、35℃以下であることが好ましく、23℃以下であることが特に好ましい。すなわち、コア層は、ガラス転移温度が23℃以下の重合体から構成される粒子であることとしてもよい。具体的に、CS粒子は、ガラス転移温度が23℃以下の重合体から構成される1つのコア層を含むこととしてもよい。この場合、CS粒子は、ガラス転移温度が23℃以下の重合体から構成される1つのコア層と、ガラス転移温度が40℃以上の重合体から構成される1つのシェル層とから構成されることが好ましい。コア層は、ガラス転移温度が23℃以下の架橋重合体から構成される粒子であることとしてもよく、ガラス転移温度が23℃以下の架橋ゴムから構成される粒子であることとしてもよい。
 コア層のガラス転移温度は、例えば、0℃以下であることが好ましく、-23℃以下であることがより好ましい。すなわち、コア層は、ガラス転移温度が0℃以下の重合体から構成される最外コア層を含むことが好ましく、ガラス転移温度が-23℃以下の重合体から構成される最外コア層を含むことがより好ましい。この場合、コア層は、ガラス転移温度が0℃以下の重合体から構成される1つのコア層を含むことが好ましく、ガラス転移温度が-23℃以下の重合体から構成される1つのコア層を含むことがより好ましい。さらに、この場合、CS粒子は、ガラス転移温度が0℃以下の重合体から構成される1つのコア層と、ガラス転移温度が40℃以上の重合体から構成される1以上のシェル層とから構成されることが好ましく、ガラス転移温度が-23℃以下の重合体から構成される1つのコア層と、ガラス転移温度が40℃以上の重合体から構成される1以上のシェル層とから構成されることがより好ましい。また、CS粒子は、ガラス転移温度が0℃以下の重合体から構成される1つのコア層と、ガラス転移温度が40℃以上の重合体から構成される1つのシェル層とから構成されることが好ましく、ガラス転移温度が-23℃以下の重合体から構成される1つのコア層と、ガラス転移温度が40℃以上の重合体から構成される1つのシェル層とから構成されることがより好ましい。なお、コア層のガラス転移温度は、例えば、-140℃以上であってもよい。ガラス転移温度は、示差熱走査熱量計(DSC)により測定される。
 ここで、ガラス転移温度(Tg)は、示差熱走査熱量分析により測定されるが、本実施形態において、当該ガラス転移温度は、Foxの計算式から求められ、次の式(1)により算出されるものである:1/(273+Tg)=Σ(Wi/(273+Tgi))。ただし、多官能性単量体の使用量は微量であるため、当該多官能性単量体の使用量は、本計算には用いないこととする。
 上記式において、Tgは、共重合体のガラス転移温度(℃)を示し、Tgiは、i成分の単独重合体のガラス転移温度(℃)を示し、Wiは、i成分の質量比率を示す(ΣWi=1)。また、i成分の単独重合体のガラス転移温度は、高分子学会編「高分子データハンドブック」(POLYMER HANDBOOK FOURTH EDITION Volume1,J.Brandrup,Interscience,1989)に記載されている値を用いる。
 なお、示差熱走査熱量分析を用いて、ガラス転移温度(Tg)を測定する場合は、測定試験片の形状や昇温速度等の測定条件によって測定されるガラス転移温度が変化することから、重合体に含まれる各成分については、上記高分子データハンドブックに記載の値が得られるように当該測定条件を最適化する必要がある。
 コア層を構成する架橋重合体は、アクリルゴム、ブタジエンゴム、スチレンブタジエンゴム、シリコンゴム、及びアクリロニトリルブタジエンゴムからなる群より選択される1種以上であってもよく、アクリルゴム、ブタジエンゴム、スチレンブタジエンゴム、及びシリコンゴムからなる群より選択される1種以上であってもよく、好ましくはアクリルゴム、ブタジエンゴム及びスチレンブタジエンゴムからなる群より選択される1種以上であり、より好ましくはアクリルゴム及びスチレンブタジエンゴムからなる群より選択される1種以上であり、特に好ましくはアクリルゴムである。
 アクリルゴムは、アクリル酸エステルと、多官能性単量体と、これらと共重合可能な不飽和単量体との共重合体であることとしてもよい。この場合、アクリルゴムは、アクリル酸エステル60.0~99.9重量%と、多官能性単量体0.1~30.0重量%と、これらと共重合可能な不飽和単量体0~39.9重量%との共重合体であることとしてもよい。また、アクリルゴムは、アクリル酸エステル60.0~99.9重量%と、多官能性単量体0.1~10.0重量%と、これらと共重合可能な不飽和単量体0~39.9重量%との共重合体であることとしてもよい。
 アクリル酸エステルは、アルキル基及び/又はエポキシ基を有することとしてもよい。アクリル酸エステルは、炭素数が1~22のアルキル基を有することとしてもよく、炭素数が1~12のアルキル基を有することとしてもよい。
 アルキル基を有するアクリル酸エステルは、アクリル酸アルキルエステル(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸オクチル、アクリル酸ドデシル、アクリル酸ステアリル及びアクリル酸ベヘニルからなる群より選択される1種以上)、アクリル酸ヒドロキシアルキルエステル(アクリル酸2-ヒドロキシエチル及びアクリル酸4-ヒドロキシブチルからなる群より選択される1種以上)、及びアクリル酸アルコキシアルキルエステル(例えば、アクリル酸メトキシメチル、アクリル酸メトキシエチル、アクリル酸エトキシメチル及びアクリル酸エトキシエチルからなる群より選択される1種以上)からなる群より選択される1種以上であることとしてもよい。エポキシ基を有するアクリル酸エステルは、アクリル酸グリシジルであることとしてもよい。
 多官能性単量体は、重合性不飽和結合を含む官能基(例えば、ラジカル重合性官能基(具体的に、例えば、アクリレート基、メタクリレート基及びアリル基からなる群より選択される1種以上))を分子内に複数有する単量体であれば特に限られないが、アリルアルキル(メタ)アクリレート(例えば、アリル(メタ)アクリレート及びアリルアルキル(メタ)アクリレートからなる群より選択される1種以上)、多官能性(メタ)アクリレート(例えば、エチレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、及びポリプロピレングリコールジ(メタ)アクリレートからなる群より選択される1種以上)、ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート(TAIC)、グリシジルジアリルイソシアヌレート、及びジビニルベンゼンからなる群より選択される1種以上であることとしてもよい。
 なお、本明細書において、(メタ)アクリレートは、アクリレート及び/又はメタクリレートを意味する。すなわち、(メタ)アクリレートは、アクリレートであってもよいし、メタクリレートであってもよいし、アクリレート及びメタクリレートであってもよい。
 アクリル酸エステル及び多官能性単量体と共重合可能な不飽和単量体は、共重合可能な二重結合を有する単量体であれば特に限られないが、例えば、メタクリル酸エステル(例えば、アルキル基(例えば、炭素数が1~22のアルキル基、又は炭素数が1~12のアルキル基)を有するメタクリル酸エステル(例えば、メタクリル酸アルキルエステル(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸オクチル、メタクリル酸ドデシル、メタクリル酸ステアリル及びメタクリル酸ベヘニルからなる群より選択される1種以上)、メタクリル酸ヒドロキシアルキルエステル(メタクリル酸2-ヒドロキシエチル及びメタクリル酸4-ヒドロキシブチルからなる群より選択される1種以上)、及びメタクリル酸アルコキシアルキルエステル(例えば、メタクリル酸メトキシメチル、メタクリル酸メトキシエチル、メタクリル酸エトキシメチル及びメタクリル酸エトキシエチルからなる群より選択される1種以上)からなる群より選択される1種以上)及び/又はエポキシ基を有するメタクリル酸エステル(例えば、メタクリル酸グリシジル))、ビニルアレーン(例えば、スチレン、α-メチルスチレン、1-ビニルナフタレン、2-ビニルナフタレン、モノクロロスチレン、ジクロロスチレン及びブロモスチレンからなる群より選択される1種以上)、ビニルカルボン酸(例えば、アクリル酸、メタクリル酸、無水マレイン酸、イタコン酸、フマル酸、及びメサコン酸からなる群より選択される1種以上)、ハロゲン化ビニル(例えば、塩化ビニル、臭化ビニル及びクロロプレンからなる群より選択される1種以上)、酢酸ビニル及びアルケン(例えば、エチレン、プロピレン、ブチレン及びイソブチレンからなる群より選択される1種以上)からなる群より選択される1種以上であることとしてもよい。
 CS粒子に含まれるコア層の量は、特に限られないが、当該CS粒子は、例えば、41重量%以上のコア層(好ましくは、アクリルゴムから構成されるゴム層)を含むことが好ましい。すなわち、CS粒子の重量(コア層の重量とシェル層の重量との合計)に対するコア層の重量の割合が41重量%以上であることが好ましい。
 この場合、CS粒子は、45重量%以上のコア層を含んでもよく、50重量%以上のコア層を含んでもよい。より具体的に、CS粒子は、41重量%以上、98重量%以下のコア層を含むことが好ましく、この場合、45重量%以上、98重量%以下のコア層を含んでもよく、50重量%以上、98重量%以下のコア層を含んでもよい。これらの場合、CS粒子に含まれるコア層の量は、97重量%以下であってもよく、96重量%以下であってもよく、95重量%以下であってもよく、94重量%以下であってもよい。
 さらに、CS粒子は、41重量%以上、84重量%以下のコア層(好ましくは、アクリルゴムから構成されるゴム層)を含むことが好ましい。この場合、CS粒子は、41重量%以上、80重量%以下のコア層を含んでもよく、41重量%以上、75重量%以下のコア層を含んでもよい。また、CS粒子は、45重量%以上、80重量%以下のコア層を含んでもよく、45重量%以上、75重量%以下のコア層を含んでもよい。また、CS粒子は、50重量%以上、80重量%以下のコア層を含んでもよく、50重量%以上、75重量%以下のコア層を含んでもよい。
 シェル層は、コア層の少なくとも一部を被覆する。すなわち、シェル層は、コア層の少なくとも一部を被覆する重合体から構成される。より具体的に、シェル層は、コア層を構成する重合体粒子の表面の少なくとも一部を被覆する重合体から構成される。
 CS粒子は、上述のとおり、1以上のシェル層を含む。すなわち、CS粒子は、1つのシェル層を含むこととしてもよく、2以上のシェル層を含むこととしてもよいが、当該1つのシェル層を含む(CS粒子が、1つのシェル層と、1以上のコア層とから構成される、又は1つのシェル層と、1つのコア層とから構成される)ことが好ましい。
 シェル層を構成する重合体は、グラフト重合体であることとしてもよい。すなわち、シェル層は、コア層に対するグラフト重合により形成されたグラフト重合体から構成されることとしてもよい。
 シェル層は、ガラス転移温度が40℃以上の重合体から構成されることとしてもよい。シェル層のガラス転移温度は、例えば、60℃以上であってもよく、80℃以上であってもよい。なお、シェル層のガラス転移温度は、例えば、160℃以下であってもよく、150℃以下であってもよい。
 シェル層は、アクリル系共重合体から構成されることとしてもよい。なお、CS粒子が2以上のシェル層を含む場合、最も外側のシェル層がアクリル系共重合体から構成されることとしてもよいし、当該2以上のシェル層の各々がアクリル系共重合体から構成されることとしてもよい。
 この場合、シェル層は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、これと共重合可能な不飽和単量体との共重合体であることとしてもよく、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、多官能性単量体とを含む原料の重合により得られる共重合体であることとしてもよく、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、多官能性単量体と、これらと共重合可能な不飽和単量体との共重合体であることとしてもよい。具体的に、シェル層は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上の単量体60.0~99.9重量%と、多官能性単量体0.1~30.0重量%と、これらと共重合可能な不飽和単量体0~39.9重量%との共重合体であることとしてもよい。また、シェル層は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上の単量体60.0~99.9重量%と、多官能性単量体0.1~10.0重量%と、これらと共重合可能な不飽和単量体0~39.9重量%との共重合体であることとしてもよい。
 なお、本明細書において、(メタ)アクリル酸エステルは、アクリル酸エステル及び/又はメタクリル酸エステルを意味する。すなわち、(メタ)アクリル酸エステルは、アクリル酸エステルであってもよいし、メタクリル酸エステルであってもよいし、アクリル酸エステル及びメタクリル酸エステルであってもよい。
 (メタ)アクリル酸エステルは、アルキル基及び/又はエポキシ基を有することとしてもよい。(メタ)アクリル酸エステルは、炭素数が1~22のアルキル基を有することとしてもよく、炭素数が1~12のアルキル基を有することとしてもよい。
 アルキル基を有する(メタ)アクリル酸エステルは、(メタ)アクリル酸アルキルエステル(例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル及び(メタ)アクリル酸ベヘニルからなる群より選択される1種以上)、(メタ)アクリル酸ヒドロキシアルキルエステル(例えば、(メタ)アクリル酸2-ヒドロキシエチル及び(メタ)アクリル酸4-ヒドロキシブチルからなる群より選択される1種以上)、及びアクリル酸アルコキシアルキルエステル(例えば、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシメチル、及び(メタ)アクリル酸エトキシエチルからなる群より選択される1種以上)からなる群より選択される1種以上であることとしてもよい。エポキシ基を有する(メタ)アクリル酸エステルは、(メタ)アクリル酸グリシジルであることとしてもよい。ビニルシアン化合物は、(メタ)アクリロニトリルであることとしてもよい。
 なお、本明細書において、(メタ)アクリロニトリルは、アクリロニトリル及び/又はメタクリロニトリルを意味する。すなわち、(メタ)アクリロニトリルは、アクリロニトリルであってもよいし、メタクリロニトリルであってもよいし、アクリロニトリル及びメタクリロニトリルであってもよい。
 多官能性単量体は、重合性不飽和結合を含む官能基(例えば、ラジカル重合性官能基(具体的に、例えば、アクリレート基、メタクリレート基及びアリル基からなる群より選択される1種以上))を分子内に複数有する単量体であれば特に限られないが、アリルアルキル(メタ)アクリレート(例えば、アリル(メタ)アクリレート及びアリルアルキル(メタ)アクリレートからなる群より選択される1種以上)、多官能性(メタ)アクリレート(例えば、エチレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、及びポリプロピレングリコールジ(メタ)アクリレートからなる群より選択される1種以上)、ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート(TAIC)、グリシジルジアリルイソシアヌレート、及びジビニルベンゼンからなる群より選択される1種以上であることとしてもよい。
 (メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上、及び多官能性単量体と共重合可能な不飽和単量体は、共重合可能な二重結合を有する単量体であれば特に限られないが、例えば、ビニルアレーン(例えば、スチレン、α-メチルスチレン、1-ビニルナフタレン、2-ビニルナフタレン、モノクロロスチレン、ジクロロスチレン及びブロモスチレンからなる群より選択される1種以上)、ビニルカルボン酸(例えば、アクリル酸、メタクリル酸、無水マレイン酸、イタコン酸、フマル酸、及びメサコン酸からなる群より選択される1種以上)、ハロゲン化ビニル(例えば、塩化ビニル、臭化ビニル及びクロロプレンからなる群より選択される1種以上)、酢酸ビニル及びアルケン(例えば、エチレン、プロピレン、ブチレン及びイソブチレンからなる群より選択される1種以上)からなる群より選択される1種以上であることとしてもよい。
 CS粒子は、少なくとも一部が架橋されたシェル層を含むこととしてもよい。この場合、シェル層は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、多官能性単量体とを含む原料の重合により得られる共重合体から構成され、又は(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、多官能性単量体と、これらと共重合可能な不飽和単量体との共重合体から構成され、その少なくとも一部が架橋されていることとしてもよい。
 より具体的に、シェル層は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上の単量体60.0~99.9重量%と、多官能性単量体0.1~30.0重量%と、これらと共重合可能な不飽和単量体0~39.9重量%との共重合体から構成され、その少なくとも一部が架橋されていることとしてもよい。また、シェル層は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上の単量体60.0~99.9重量%と、多官能性単量体0.1~10.0重量%と、これらと共重合可能な不飽和単量体0~39.9重量%との共重合体から構成され、その少なくとも一部が架橋されていることとしてもよい。
 CS粒子が、少なくとも一部が架橋されたシェル層を含む場合、当該シェル層の架橋度は特に限られないが、当該CS粒子は、架橋度が0.26%以上のシェル層を含むことが好ましく、この場合、架橋度が0.30%以上のシェル層を含むこととしてもよく、架橋度が0.50%以上のシェル層を含むこととしてもよい。
 ここで、シェル層の架橋度は、当該シェル層が(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、多官能性単量体とを含む原料の重合により得られる共重合体から構成される場合、当該原料の重量に対する当該多官能性単量体の重量の割合(重量%)である。より具体的に、シェル層の架橋度は、当該シェル層が(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、多官能性単量体との共重合体から構成される場合、当該(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上の重量と、当該多官能性単量体の重量との合計に対する当該多官能性単量体の重量の割合(重量%)である。また、シェル層の架橋度は、例えば、当該シェル層が(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、多官能性単量体と、これらと共重合可能な不飽和単量体との共重合体から構成される場合、当該(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上の重量と、当該多官能性単量体の重量と、当該これらと共重合可能な不飽和単量体の重量との合計に対する当該多官能性単量体の重量の割合(重量%)である。
 具体的に、例えば、シェル層が、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上の単量体90重量%と、多官能性単量体1.0重量%と、これらと共重合可能な不飽和単量体9重量%との共重合体から構成される場合、当該シェル層は、その一部が架橋されたシェル層であり、その架橋度は1.0%である。また、例えば、シェル層が多官能性単量体100重量%の重合体から構成される場合、当該シェル層の架橋度は100%である。このように、共重合体を形成する、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上の単量体、多官能性単量体、及びこれらと共重合可能な不飽和単量体の比率を調節することにより、シェル層の架橋度を調節することができる。
 シェル層の架橋度は、0.26%以上、100%以下であってもよく、0.30%以上、100%以下であってもよく、0.50%以上、100%以下であってもよい。また、シェル層の架橋度は、0.26%以上、30.0%以下であってもよく、0.30%以上、30%以下であってもよく、0.50%以上、30.0%以下であってもよい。また、シェル層の架橋度は、0.26%以上、10.0%以下であってもよく、0.30%以上、10%以下であってもよく、0.50%以上、10.0%以下であってもよい。なお、シェル層の架橋度は、例えば、CS粒子のNMRによる分析により確認することができる。
 CS粒子が、少なくとも一部が架橋されたシェル層を含む場合(例えば、架橋度が0.26%以上のシェル層(より具体的には、例えば、架橋度が0.26%以上、30.0%以下のシェル層、又は架橋度が0.26%以上、10.0%以下のシェル層)を含む場合、架橋度が0.30%以上のシェル層(より具体的には、例えば、架橋度が0.30%以上、30.0%以下のシェル層、又は架橋度が0.30%以上、10.0%以下のシェル層)を含む場合、又は架橋度が0.50%以上(より具体的には、例えば、架橋度が0.50%以上、30.0%以下のシェル層、又は架橋度が0.50%以上、10.0%以下のシェル層)のシェル層を含む場合)、当該CS粒子は、41重量%以上、45重量%以上、50重量%以上、55重量%以上、60重量%以上、65重量%以上、70重量%以上、75重量%以上、80重量%以上、又は85重量%以上のコア層を含んでもよい。
 CS粒子が、上記少なくとも一部が架橋されたシェル層のいずれかと、上記下限値のいずれか以上のコア層とを含む場合、当該CS粒子は、98重量%以下、97重量%以下、96重量%以下、95重量%以下、又は94重量%以下の当該コア層を含んでもよく、さらに、84重量%以下、80重量%以下、又は75重量%以下の当該コア層を含んでもよい。
 CS粒子は、架橋されていないシェル層を含むこととしてもよい。すなわち、CS粒子が架橋されていないシェル層を含む場合、当該CS粒子は、41重量%以上のコア層を含むことが好ましく、この場合、当該CS粒子は、45重量%以上のコア層を含んでもよく、50重量%以上のコア層を含んでもよい。
 より具体的に、架橋されていないシェル層を含むCS粒子は、41重量%以上、98重量%以下のコア層を含むことが好ましく、この場合、45重量%以上、98重量%以下のコア層を含んでもよく、50重量%以上、98重量%以下のコア層を含んでもよい。これらの場合、CS粒子に含まれるコア層の量は、97重量%以下であってもよく、96重量%以下であってもよく、95重量%以下であってもよく、94重量%以下であってもよい。
 さらに、架橋されていないシェル層を含むCS粒子は、41重量%以上、84重量%以下のコア層(好ましくは、アクリルゴムから構成されるゴム層)を含むことが好ましく、この場合、当該CS粒子は、41重量%以上、80重量%以下のコア層を含んでもよく、41重量%以上、75重量%以下のコア層を含んでもよい。また、CS粒子は、45重量%以上、80重量%以下のコア層を含んでもよく、45重量%以上、75重量%以下のコア層を含んでもよい。また、CS粒子は、50重量%以上、80重量%以下のコア層を含んでもよく、50重量%以上、75重量%以下のコア層を含んでもよい。
 また、本組成物及び本被覆材は、58.1重量部以上、73.9重量部以下のTPUと、26.1重量部以上、41.9重量部以下のCS粒子とからなる100重量部の樹脂成分と、42重量部以上、87重量部以下のPE難燃剤と、を含み、当該CS粒子は、1以上のコア層と1以上のシェル層とから構成され、当該コア層は、ガラス転移温度が40℃未満の重合体から構成される最外コア層を含み、当該シェル層は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、多官能性単量体とを含む原料の重合により得られる共重合体であってガラス転移温度が40℃以上の共重合体から構成される架橋シェル層を含み、当該CS粒子は、次の(a)~(d):(a)当該コア層と当該シェル層との合計100重量%に対して、50.1重量%以上、88.9重量%以下の当該コア層を含み、当該架橋シェル層の架橋度が0.05%以上、0.42%以下であるCS粒子;、(b)当該コア層と当該シェル層との合計100重量%に対して、50.1重量%以上、89.4重量%以下の当該コア層を含み、当該架橋シェル層の架橋度が0.42%超、0.45%以下であるCS粒子;、(c)当該コア層と当該シェル層との合計100重量%に対して、50.1重量%以上、90.4重量%以下の当該コア層を含み、当該架橋シェル層の架橋度が0.45%超、0.50%以下であるCS粒子;及び(d)当該コア層と当該シェル層との合計100重量%に対して、40.1重量%以上、90.4重量%以下の当該コア層を含み、当該架橋シェル層の架橋度が0.50%超、5.00%以下であるCS粒子;からなる群より選択される1種以上であることとしてもよい。
 CS粒子が上記(a)を含む場合、コア層とシェル層との合計100重量%に対して、51.0重量%以上、87.0重量%以下の当該コア層を含むこととしてもよく、52.0重量%以上、85.0重量%以下の当該コア層を含むことが好ましい。また、CS粒子が上記(a)を含む場合、コア層とシェル層との合計100重量%に対して、57.1重量%以上、88.9重量%以下の当該コア層を含むこととしてもよく、58.0重量%以上、87.0重量%以下の当該コア層を含むことが好ましく、60.0重量%以上、85.0重量%以下の当該コア層を含むことがより好ましい。
 CS粒子が上記(a)を含み、コア層とシェル層との合計100重量%に対して、50.1重量%以上、88.9重量%以下の範囲、51.0重量%以上、87.0重量%以下の範囲、52.0重量%以上、85.0重量%以下の範囲、57.1重量%以上、88.9重量%以下の範囲、58.0重量%以上、87.0重量%以下の範囲、又は60.0重量%以上、85.0重量%以下の範囲の当該コア層を含む場合、上記架橋シェル層の架橋度は、0.05%以上、0.42%以下であってもよく、0.05%以上、0.43%以下であってもよい。
 CS粒子が上記(b)を含む場合、コア層とシェル層との合計100重量%に対して、51.0重量%以上、89.3重量%以下の当該コア層を含むこととしてもよく、52.0重量%以上、89.0重量%以下の当該コア層を含むことが好ましい。また、CS粒子が上記(b)を含む場合、コア層とシェル層との合計100重量%に対して、57.1重量%以上、89.4重量%以下の当該コア層を含むこととしてもよく、58.0重量%以上、89.3重量%以下の当該コア層を含むことが好ましく、60.0重量%以上、89.0重量%以下の当該コア層を含むことがより好ましい。
 CS粒子が上記(b)を含み、コア層とシェル層との合計100重量%に対して、50.1重量%以上、89.4重量%以下の範囲、51.0重量%以上、89.3重量%以下の範囲、52.0重量%以上、89.0重量%以下の範囲、57.1重量%以上、89.4重量%以下の範囲、58.0重量%以上、89.3重量%以下の範囲、又は60.0重量%以上、89.0重量%以下の範囲の当該コア層を含む場合、上記架橋シェル層の架橋度は、0.42%超(又は0.42%以上)、0.45%以下であってもよく、0.43%超(又は0.43%以上)、0.47%以下であってもよい。
 CS粒子が上記(c)を含む場合、コア層とシェル層との合計100重量%に対して、51.0重量%以上、90.0重量%以下の当該コア層を含むこととしてもよく、52.0重量%以上、89.5重量%以下の当該コア層を含むことが好ましい。
 CS粒子が上記(c)を含み、コア層とシェル層との合計100重量%に対して、51.0重量%以上、90.0重量%以下の範囲、又は52.0重量%以上、89.5重量%以下の範囲の当該コア層を含む場合、上記架橋シェル層の架橋度は、0.45%超(又は0.45%以上)、0.50%以下であってもよく、0.47%超(又は0.47%以上)、0.70%以下であってもよい。
 CS粒子が上記(d)を含む場合、コア層とシェル層との合計100重量%に対して、45.0重量%以上、90.0重量%以下の当該コア層を含むこととしてもよく、50.0重量%以上、89.5重量%以下の当該コア層を含むことが好ましい。
 CS粒子が上記(d)を含み、コア層とシェル層との合計100重量%に対して、45.0重量%以上、90.0重量%以下の範囲、又は50.0重量%以上、89.5重量%以下の当該コア層を含む場合、上記架橋シェル層の架橋度は、0.50%超(又は0.50%以上)、5.00%以下であってもよく、0.70%超(又は0.70%以上)、5.00%以下であってもよく、1.50%超(又は1.50%以上)、5.00%以下であってもよく、1.70%超(又は1.70%以上)、5.00%以下であってもよい。
 具体的に、CS粒子は、次の(a)~(d):(a)コア層とシェル層との合計100重量%に対して、51.0重量%以上、87.0重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.05%以上、0.42%以下であるCS粒子;、(b)コア層とシェル層との合計100重量%に対して、51.0重量%以上、89.3重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.42%超、0.45%以下であるCS粒子;、(c)コア層とシェル層との合計100重量%に対して、51.0重量%以上、90.0重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.45%超、0.50%以下であるCS粒子;及び(d)コア層とシェル層との合計100重量%に対して、45.0重量%以上、90.0重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.50%超、5.00%以下であるCS粒子;からなる群より選択される1種以上であることとしてもよい。
 また、CS粒子は、次の(a)~(d):(a)コア層とシェル層との合計100重量%に対して、51.0重量%以上、87.0重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.05%以上、0.43%以下であるCS粒子;、(b)コア層とシェル層との合計100重量%に対して、51.0重量%以上、89.3重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.43%超、0.47%以下であるCS粒子;、(c)コア層とシェル層との合計100重量%に対して、51.0重量%以上、90.0重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.47%超、0.70%以下であるCS粒子;及び(d)コア層とシェル層との合計100重量%に対して、45.0重量%以上、90.0重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.70%超、5.00%以下であるCS粒子;からなる群より選択される1種以上であることとしてもよい。
 また、CS粒子は、次の(a)~(d):(a)コア層とシェル層との合計100重量%に対して、52.0重量%以上、85.0重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.05%以上、0.42%以下であるCS粒子;、(b)コア層とシェル層との合計100重量%に対して、52.0重量%以上、89.0重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.42%超、0.45%以下であるCS粒子;、(c)コア層とシェル層との合計100重量%に対して、52.0重量%以上、89.5重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.45%超、0.50%以下であるCS粒子;及び(d)コア層とシェル層との合計100重量%に対して、50.0重量%以上、89.5重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.50%超、5.00%以下であるCS粒子;からなる群より選択される1種以上であることとしてもよい。
 また、CS粒子は、次の(a)~(d):(a)コア層とシェル層との合計100重量%に対して、52.0重量%以上、85.0重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.05%以上、0.43%以下であるCS粒子;、(b)コア層とシェル層との合計100重量%に対して、52.0重量%以上、89.0重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.43%超、0.47%以下であるCS粒子;、(c)コア層とシェル層との合計100重量%に対して、52.0重量%以上、89.5重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.47%超、0.70%以下であるCS粒子;及び(d)コア層とシェル層との合計100重量%に対して、50.0重量%以上、89.5重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.70%超、5.00%以下であるCS粒子;からなる群より選択される1種以上であることとしてもよい。
 また、CS粒子は、次の(a)~(d):(a)コア層とシェル層との合計100重量%に対して、57.1重量%以上、88.9重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.05%以上、0.42%以下であるCS粒子;、(b)コア層とシェル層との合計100重量%に対して、57.1重量%以上、89.4重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.42%超、0.45%以下であるCS粒子;、(c)コア層とシェル層との合計100重量%に対して、50.1重量%以上、90.4重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.45%超、1.50%以下であるCS粒子;及び(d)コア層とシェル層との合計100重量%に対して、40.1重量%以上、90.4重量%以下の当該コア層を含み、架橋シェル層の架橋度が1.50%超、5.00%以下であるCS粒子;からなる群より選択される1種以上であることとしてもよい。
 また、CS粒子は、次の(a)~(d):(a)コア層とシェル層との合計100重量%に対して、58.0重量%以上、87.0重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.05%以上、0.42%以下であるCS粒子;、(b)コア層とシェル層との合計100重量%に対して、58.0重量%以上、89.3重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.42%超、0.45%以下であるCS;、(c)コア層とシェル層との合計100重量%に対して、51.0重量%以上、90.0重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.45%超、1.50%以下であるCS粒子;及び(d)コア層とシェル層との合計100重量%に対して、45.0重量%以上、90.0重量%以下の当該コア層を含み、架橋シェル層の架橋度が1.50%超、5.00%以下であるCS粒子;からなる群より選択される1種以上であることとしてもよい。
 また、CS粒子は、次の(a)~(d):(a)コア層とシェル層との合計100重量%に対して、58.0重量%以上、87.0重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.05%以上、0.43%以下であるCS粒子;、(b)コア層とシェル層との合計100重量%に対して、58.0重量%以上、89.3重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.43%超、0.47%以下であるCS粒子;、(c)コア層とシェル層との合計100重量%に対して、51.0重量%以上、90.0重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.47%超、1.70%以下であるCS粒子;及び(d)コア層とシェル層との合計100重量%に対して、45.0重量%以上、90.0重量%以下の当該コア層を含み、架橋シェル層の架橋度が1.70%超、5.00%以下であるCS粒子;からなる群より選択される1種以上であることとしてもよい。
 また、CS粒子は、次の(a)~(d):(a)コア層とシェル層との合計100重量%に対して、60.0重量%以上、85.0重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.05%以上、0.42%以下であるCS粒子;、(b)コア層とシェル層との合計100重量%に対して、60.0重量%以上、89.0重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.42%超、0.45%以下であるCS粒子;、(c)コア層とシェル層との合計100重量%に対して、52.0重量%以上、89.5重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.45%超、1.50%以下であるCS粒子;及び(d)コア層とシェル層との合計100重量%に対して、50.0重量%以上、89.5重量%以下の当該コア層を含み、架橋シェル層の架橋度が1.50%超、5.00%以下であるCS粒子;からなる群より選択される1種以上であることとしてもよい。
 また、CS粒子は、次の(a)~(d):(a)コア層とシェル層との合計100重量%に対して、60.0重量%以上、85.0重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.05%以上、0.43%以下であるCS粒子;、(b)コア層とシェル層との合計100重量%に対して、60.0重量%以上、89.0重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.43%超、0.47%以下であるCS粒子;、(c)コア層とシェル層との合計100重量%に対して、52.0重量%以上、89.5重量%以下の当該コア層を含み、架橋シェル層の架橋度が0.47%超、1.70%以下であるCS粒子;及び(d)コア層とシェル層との合計100重量%に対して、50.0重量%以上、89.5重量%以下の当該コア層を含み、架橋シェル層の架橋度が1.70%超、5.00%以下であるCS粒子;からなる群より選択される1種以上であることとしてもよい。
 CS粒子が上記(a)~(d)からなる群より選択される1種以上である場合、当該CSは、少なくとも上記(a)を含むこととしてもよいし、少なくとも上記(b)を含むこととしてもよいし、少なくとも上記(c)を含むこととしてもよいし、又は少なくとも上記(d)を含むこととしてもよい。また、CS粒子は、上記(a)及び(b)を含んでもよく、この場合、さらに上記(c)を含んでもよいし、さらに上記(d)を含んでもよいし、又はさらに上記(c)及び(d)を含んでもよい。CS粒子は、上記(a)及び(c)を含んでもよく、この場合、さらに上記(d)を含んでもよい。CS粒子は、上記(a)及び(d)を含んでもよい。CS粒子は、上記(b)及び(c)を含んでもよく、この場合、さらに上記(d)を含んでもよい。CS粒子は、上記(b)及び(d)を含んでもよい。CS粒子は、上記(c)及び(d)を含んでもよい。
 なお、上記(a)のCS粒子について、架橋シェル層の架橋度は、0.10%以上であってもよく、0.15%以上であることが好ましく、0.20%以上であることがより好ましく、0.25%以上であることが特に好ましい。これら上記(a)の架橋度の下限値の各々は、上述した当該架橋度の上限値の各々と組み合わせられる。また、上記(d)のCS粒子について、架橋シェル層の架橋度は、4.00%以下であることが好ましく、3.00%以下であることがより好ましく、2.00%以下であることが特に好ましい。これら上記(d)の架橋度の上限値の各々は、上述した当該架橋度の下限値の各々と組み合わせられる。
 また、上述のように、CS粒子は、1以上のコア層と1以上のシェル層とから構成され、当該コア層は、ガラス転移温度が40℃未満の重合体から構成される最外コア層を含み、当該シェル層は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、多官能性単量体とを含む原料の重合により得られる共重合体であってガラス転移温度が40℃以上の共重合体から構成される架橋シェル層を含み、当該CS粒子は、上記(a)~(d)からなる群より選択される1種以上である場合、本組成物及び本被覆材は、59.1重量部以上、73.9重量部以下のTPUと、26.1重量部以上、40.9重量部以下のCS粒子とからなる100重量部の樹脂成分と、42重量部以上、87重量部以下のPE難燃剤と、を含むこととしてもよい。この場合、本組成物及び本被覆材は、極めて優れた難燃性を示す。
 また、この場合、本組成物及び本被覆材は、59.2重量部以上、73.7重量部以下のTPUと、26.2重量部以上、40.7重量部以下のCS粒子とからなる100重量部の樹脂成分と、42重量部以上、87重量部以下のPE難燃剤と、を含むことが好ましい。
 さらに、本組成物及び本被覆材は、59.5重量部以上、73.5重量部以下のTPUと、26.5重量部以上、40.5重量部以下のCS粒子とからなる100重量部の樹脂成分と、43重量部以上、85重量部以下のPE難燃剤と、を含むことがより好ましい。
 CS粒子に含まれる1以上のシェル層は、ガラス転移温度が40℃以上の上記共重合体から構成される架橋シェル層を含むものであれば特に限られない。すなわち、CS粒子が、2以上のシェル層を含む場合、当該2以上のシェル層のうち、少なくとも1つのシェル層が上記架橋シェル層であればよい。ただし、CS粒子が、1つのシェル層を含み、当該1つのシェル層が上記架橋シェル層であることが好ましい。
 また、上記架橋シェル層は、CS粒子の最外層を構成する最外シェル層であることが好ましい。すなわち、CS粒子が、2以上のシェル層を含む場合、当該2以上のシェル層のうち、CS粒子の径方向における最も外側のシェル層である最外シェル層が、上記架橋シェルであることが好ましい。CS粒子が1つのシェル層を含む(CS粒子のシェル層が、1つのシェル層から構成される)場合には、当該1つのシェル層が最外シェル層であり、上記架橋シェル層である。
 また、上記架橋シェル層を構成する共重合体は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、多官能性単量体と、これらと共重合可能な不飽和単量体との共重合体であることとしてもよい。すなわち、この場合、架橋シェル層は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、多官能性単量体と、これらと共重合可能な不飽和単量体との共重合体であってガラス転移温度が40℃以上の共重合体から構成される。
 CS粒子は、各々が、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、多官能性単量体とを含む原料の重合により得られる共重合体であってガラス転移温度が40℃以上の共重合体から構成される1以上のシェル層を含むこととしてもよい。この場合、CS粒子は、各々が、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、多官能性単量体と、これらと共重合可能な不飽和単量体との共重合体であってガラス転移温度が40℃以上の共重合体から構成される1以上のシェル層を含むこととしてもよい。
 また、CS粒子は、各々が、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上を含み多官能性単量体を含まない原料の重合により得られる重合体(架橋されていない重合体)であってガラス転移温度が40℃以上の重合体から構成される1以上のシェル層を含むこととしてもよい。この場合、CS粒子は、各々が、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、これと共重合可能な不飽和単量体との共重合体(架橋されていない共重合体)であってガラス転移温度が40℃以上の共重合体から構成される1以上のシェル層を含むこととしてもよい。
 また、本組成物及び本被覆材は、58.1重量部以上、73.9重量部以下のTPUと、26.1重量部以上、41.9重量部以下のCS粒子とからなる100重量部の樹脂成分と、42重量部以上、87重量部以下のPE難燃剤と、を含み、当該CS粒子は、1以上のコア層と1以上のシェル層とから構成され、当該コア層と当該シェル層との合計100重量%に対して、57.1重量%以上、82.0重量%以下の当該コア層を含むこととしてもよい。この場合、本組成物及び本被覆材は、極めて優れた難燃性を示す。
 また、この場合、CS粒子は、コア層とシェル層との合計100重量%に対して、58.0重量%以上、82.0重量%以下の当該コア層を含むことが好ましい。さらに、この場合、CS粒子は、コア層とシェル層との合計100重量%に対して、60.0重量%以上、82.0重量%以下の当該コア層を含むことがより好ましい。
 また、上述のように、CS粒子がコア層とシェル層との合計100重量%に対して、57.1重量%以上、82.0重量%以下の範囲又は上述したより狭い範囲の当該コア層を含む場合、当該CS粒子の、JIS K 6253-3:2012に準拠した方法であって、試験機としてタイプAデュロメータを使用し、自動タイマ装置を使用せず、厚さ1.0mm以上、1.5mm以下のシート(30mm×40mm)を6枚積み重ねて得られる積層体を試験片として使用し、当該試験片を温度23℃、相対湿度50%で24時間以上状態調節した後、温度23℃及び相対湿度50%にて、加圧板を当該試験片に接触させてから10秒後の測定値を読み取る方法にて測定されるショアA硬度は、81以上、100以下であることとしてもよい。
 この場合、CS粒子の上記方法にて測定されるショアA硬度は、81以上、96以下であることとしてもよく、82以上、96以下であることとしてもよく、85以上、93以下であることとしてもよい。
 また、上述のように、CS粒子が、1以上のコア層と1以上のシェル層とから構成され、当該コア層と当該シェル層との合計100重量%に対して、57.1重量%以上、82.0重量%以下の範囲又は上述したより狭い範囲の当該コア層を含む場合、当該1以上のシェル層は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上を含み多官能性単量体を含まない原料の重合により得られる重合体であってガラス転移温度が40℃以上の重合体から構成されることとしてもよい。すなわち、CS粒子は、1以上のコア層と、架橋されていない上記1以上のシェル層とから構成される。この場合、CS粒子は、1以上のコア層と、架橋されていない1つのシェル層とから構成されることが好ましく、1つのコア層と、架橋されていない1つのシェル層とから構成されることがより好ましい。
 また、上述のように、CS粒子が、コア層とシェル層との合計100重量%に対して、57.1重量%以上、82.0重量%以下の範囲又は上述したより狭い範囲の当該コア層を含み、当該シェル層が架橋されていない場合、CS粒子の、JIS K 6253-3:2012に準拠した方法であって、試験機としてタイプAデュロメータを使用し、自動タイマ装置を使用せず、厚さ1.0mm以上、1.5mm以下のシート(30mm×40mm)を6枚積み重ねて得られる積層体を試験片として使用し、前記試験片を温度23℃、相対湿度50%で24時間以上状態調節した後、温度23℃及び相対湿度50%にて、加圧板を前記試験片に接触させてから10秒後の測定値を読み取る方法にて測定されるショアA硬度は、81以上、100以下であることとしてもよい。
 さらに、この場合、CS粒子の上記方法にて測定されるショアA硬度は、81以上、96以下であることとしてもよく、82以上、96以下であることとしてもよく、85以上、93以下であることとしてもよく、85以上、90以下であることとしてもよい。
 また、上述のように、CS粒子が、1以上のコア層と1以上のシェル層とから構成され、当該コア層と当該シェル層との合計100重量%に対して、57.1重量%以上、82.0重量%以下の範囲又は上述したより狭い範囲の当該コア層を含み、当該1以上のシェル層は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上を含み多官能性単量体を含まない原料の重合により得られる重合体であってガラス転移温度が40℃以上の重合体から構成される場合、本組成物及び本被覆材は、58.6重量部以上、73.4重量部以下のTPUと、26.6重量部以上、41.4重量部以下のCS粒子とからなる100重量部の樹脂成分と、41重量部以上、87重量部以下のPE難燃剤と、を含むこととしてもよい。この場合、本組成物及び本被覆材は、極めて優れた難燃性を示す。
 この場合、本組成物及び本被覆材は、59.0重量部以上、72.0重量部以下のTPUと、28.0重量部以上、41.0重量部以下のCS粒子とからなる100重量部の樹脂成分と、41重量部以上、86重量部以下のPE難燃剤と、を含むことが好ましい。
 さらに、この場合、60.0重量部以上、70.0重量部以下のTPUと、30.0重量部以上、40.0重量部以下のCS粒子とからなる100重量部の樹脂成分と、41重量部以上、85重量部以下のPE難燃剤と、を含むことがより好ましい。
 また、本組成物及び本被覆材は、58.6重量部以上、73.4重量部以下の範囲又は上述のより狭い範囲のTPUと、26.6重量部以上、41.4重量部以下の範囲又は上述のより狭い範囲のCS粒子とからなる100重量部の樹脂成分と、41重量部以上、87重量部以下の範囲又は上述のより狭い範囲のPE難燃剤と、を含み、当該CS粒子は、1以上のコア層と1以上のシェル層とから構成され、当該コア層と当該シェル層との合計100重量%に対して、57.1重量%以上、82.0重量%以下の範囲、又は上述のより狭い範囲の当該コア層を含み、当該1以上のシェル層は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上を含み多官能性単量体を含まない原料の重合により得られる重合体であってガラス転移温度が40℃以上の重合体から構成される場合、当該CS粒子の、JIS K 6253-3:2012に準拠した方法であって、試験機としてタイプAデュロメータを使用し、自動タイマ装置を使用せず、厚さ1.0mm以上、1.5mm以下のシート(30mm×40mm)を6枚積み重ねて得られる積層体を試験片として使用し、当該試験片を温度23℃、相対湿度50%で24時間以上状態調節した後、温度23℃及び相対湿度50%にて、加圧板を当該試験片に接触させてから10秒後の測定値を読み取る方法にて測定されるショアA硬度は、81以上、100以下であることとしてもよい。
 さらに、この場合、CS粒子の上記方法にて測定されるショアA硬度は、81以上、96以下であることとしてもよく、82以上、96以下であることとしてもよく、85以上、93以下であることとしてもよく、85以上、90以下であることとしてもよい。
 また、上述のとおりCS粒子の1以上のシェル層が架橋されていない場合、当該1以上のシェル層を構成する重合体は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、これと共重合可能な不飽和単量体との共重合体であることとしてもよい。すなわち、この場合、1以上のシェル層は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、これと共重合可能な不飽和単量体との共重合体であってガラス転移温度が40℃以上の共重合体から構成される。
 なお、上述した特許文献2(特開2005-015942号公報)の段落0021には、(A)メチルメタクリレート80~98.99重量%、炭素数1~8のアルキル基を持つアクリル酸アルキルエステル1~20重量%、多官能性グラフト剤0.01~1重量%及び多官能性架橋剤0~0.5重量%からなる単量体混合物を重合してなる最内層の硬質重合体層5~30重量部;(B)炭素数1~8のアルキル基を持つアクリル酸アルキルエステル70~99.5重量%、メチルメタクリレート0~30重量%、多官能性グラフト剤0.5~5重量%及び多官能性架橋剤0~5重量%からなる単量体混合物を重合してなる中間層の硬質重合体層20~45重量部;(C)メチルメタクリレート90~99重量%及び炭素数1~8のアルキル基を持つアクリル酸アルキルエステル10~1重量%からなる単量体混合物を重合してなる最外層の硬質重合体層50~75重量部からなるアクリル系軟質多層構造樹脂が記載されている。
 ここで、上記特許文献2の(B)の中間層を構成する成分について、ガラス転移温度が最も高いアクリル酸アルキルエステルは、メチルアクリレートであり、そのガラス転移温度は10℃であり、メチルメタクリレートのガラス転移温度は105℃である。したがって、上記特許文献2の(B)の中間層のガラス転移温度が最も高くなるのは、メチルアクリレート70重量部と、メチルメタクリレート30重量部とを組み合わせて使用した場合であり、この場合、そのガラス転移温度は、上記式(1)によれば、33℃と算出される。すなわち、上記特許文献2の(B)の中間層は、本実施形態における架橋シェル層に相当するものではない。
 一方、上記特許文献2の(C)の最外層を構成する成分について、メチルメタクリレートのガラス転移温度は105℃、最もガラス転移温度が低いアクリル酸アルキルエステルの当該ガラス転移温度は-110℃程度である。したがって、メチルメタクリレート90重量部と、上記アクリル酸アルキルエステル10重量部とを組み合わせて使用した場合の重合体のガラス転移温度は、上記式(1)によれば、61℃付近となる。
 シェル層を構成する重合体は、TPUとの相溶性に優れることが好ましい。このため、シェル層は、その溶解度パラメータ(SP)値と、TPUのSP値との差分が5以下である重合体から構成されることが好ましい。シェル層を構成する重合体のSP値と、TPUのSP値との差分は、3以下であることが好ましく、2以下であることがより好ましく、1以下であることが特に好ましい。なお、CS粒子が2以上のシェル層を含む場合、当該2以上のシェル層を構成する重合体全体の溶解度パラメータ(SP)値と、TPUのSP値との差分が5以下(好ましくは3以下、より好ましくは2以下、特に好ましくは1以下)であることとしてもよい。
 本組成物及び本被覆材は、上述のとおり、58.1重量部以上、73.9重量部以下のTPUと、26.1重量部以上、41.9重量部以下のCS粒子とを、当該TPUの重量部と当該CS粒子の重量部との合計が100重量部となるように含むことが好ましい。この場合、本組成物及び本被覆材は、58.5重量部以上、73.5重量部以下のTPUと、26.5重量部以上、41.5重量部以下のCS粒子とを、当該TPUの重量部と当該CS粒子の重量部との合計が100重量部となるように含むこととしてもよい。本組成物及び本被覆材が、これら特定の重量比率でTPUとCS粒子とを含む場合、当該本組成物及び本被覆材は、特に優れた難燃性を示す。
 また、本組成物及び本被覆材は、TPUと、当該TPU100重量部に対し、35.2重量部以上、72.3重量部以下のCS粒子からなる難燃剤を含むことが好ましい。この場合、本組成物及び本被覆材は、TPUと、当該TPU100重量部に対し、36.1重量部以上、70.9重量部以下のCS粒子からなる難燃剤を含むこととしてもよい。本組成物及び本被覆材が、これら特定の重量比率でTPUとCS粒子とを含む場合、当該本組成物及び本被覆材は、特に優れた難燃性を示す。
 本組成物及び本被覆材は、ノンハロゲン(ハロゲンフリー)難燃剤として、PE難燃剤を含む。PE難燃剤は、TPUを含む熱可塑性ポリウレタン系樹脂組成物及び導体被覆材において、難燃性を示すリン酸エステルである。
 すなわち、PE難燃剤は、例えば、CS粒子について上述したような難燃性試験において、TPUとPE難燃剤とを含む熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の試験片の消炎時間を、当該TPUを含み当該PE難燃剤を含まない熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の試験片の消炎時間より低減させるようなリン酸エステルである。
 PE難燃剤は、縮合リン酸エステルであることとしてもよい。また、PE難燃剤は、その分子内に環状構造を含むリン酸エステルであることとしてもよい。この場合、PE難燃剤は、その分子内に環状構造を含む縮合リン酸エステルであることとしてもよい。これらの場合、環状構造は、ベンゼン環及び/又は複素環(例えば、リン原子、酸素原子及び窒素原子からなる群より選択される1種以上を含む複素環、又はリン原子及び/又は酸素原子を含む複素環)であることとしてもよい。
 PE難燃剤は、TPUとの相溶性に優れることが好ましい。このため、PE難燃剤は、その溶解度パラメータ(SP)値と、TPUのSP値との差分が5以下であるリン酸エステルであることが好ましい。PE難燃剤のSP値と、TPUのSP値との差分は、3以下であることが好ましく、2以下であることがより好ましく、1以下であることが特に好ましい。
 本組成物及び本被覆材は、上述のとおり、58.1重量部以上、73.9重量部以下のTPUと、26.1重量部以上、41.9重量部以下のCS粒子とからなる100重量部の樹脂成分と、42重量部以上、87重量部以下のPE難燃剤と、を含むことが好ましい。この場合、本組成物及び本被覆材は、58.5重量部以上、73.5重量部以下のTPUと、26.5重量部以上、41.5重量部以下のCS粒子とからなる100重量部の樹脂成分と、43重量部以上、85重量部以下のPE難燃剤と、を含むこととしてもよい。本組成物及び本被覆材が、これら特定の重量比率でTPUとCS粒子とPE難燃剤とを含む場合、当該本組成物及び本被覆材は、特に優れた難燃性を示す。
 また、本組成物及び本被覆材は、TPUと、当該TPU100重量部に対し、35.2重量部以上、72.3重量部以下のCS粒子からなる難燃剤と、当該TPUと当該CS粒子との合計100重量部に対し、42重量部以上、87重量部以下のPE難燃剤と、を含むことが好ましい。この場合、本組成物及び本被覆材は、TPUと、当該TPU100重量部に対し、36.1重量部以上、70.9重量部以下のCS粒子からなる難燃剤と、当該TPUと当該CS粒子との合計100重量部に対し、43重量部以上、85重量部以下のPE難燃剤と、を含むこととしてもよい。本組成物及び本被覆材が、これら特定の重量比率でTPUとCS粒子とPE難燃剤とを含む場合、当該本組成物及び本被覆材は、特に優れた難燃性を示す。
 また、本組成物及び本被覆材は、TPUとPE難燃剤との合計100重量部に対し、21.9重量部以上、40.7重量部以下のCS粒子からなる難燃剤を含むことが好ましい。この場合、本組成物及び本被覆材は、TPUとPE難燃剤との合計100重量部に対し、22.4重量部以上、40.1重量部以下のCS粒子からなる難燃剤を含むこととしてもよい。また、本組成物及び本被覆材は、TPUと、当該TPU100重量部に対し63.2重量部以上、135.3重量部以下のPE難燃剤と、当該TPUと当該PE難燃剤との合計100重量部に対し、23.0重量部以上、40.7重量部以下のCS粒子からなる難燃剤とを含むことも好ましい。この場合、本組成物及び本被覆材は、TPUと、当該TPU100重量部に対し66.2重量部以上、130.8重量部以下のPE難燃剤と、当該TPUと当該PE難燃剤との合計100重量部に対し、30.6重量部以上、40.1重量部以下のCS粒子からなる難燃剤とを含むこととしてもよい。また、本組成物及び本被覆材は、TPUと、当該TPU100重量部に対し64.3重量部以上、76.9重量部以下のPE難燃剤と、当該TPUと当該PE難燃剤との合計100重量部に対し、26.1重量部以上、40.1重量部以下のCS粒子からなる難燃剤とを含むこととしてもよい。本組成物及び本被覆材が、これら特定の重量比率でTPUとPE難燃剤とCS粒子とを含む場合、当該本組成物及び本被覆材は、特に優れた難燃性を示す。
 本組成物及び本被覆材が、上述のような特定の重量比率でTPUとPE難燃剤とCS粒子とを含む場合、本組成物及び本被覆材は、例えば、ポリエステル系TPU(具体的に、例えば、155℃以上、160℃以上、好ましくは170℃以上、175℃以上又は180℃以上の流動開始点を有するポリエステル系TPU、より具体的には、155℃以上、160℃以上、好ましくは170℃以上、175℃以上又は180℃以上の流動開始点を有するアジペート系TPU)と、少なくとも一部が架橋されたシェル層(具体的に、例えば、好ましくは架橋度が0.26%以上(例えば、0.26%以上、30.0%以下、又は0.26%以上、10.0%以下)のシェル層、架橋度が0.30%以上(例えば、0.30%以上、30.0%以下、又は0.30%以上、10.0%以下)のシェル層又は架橋度が0.50%以上(例えば、0.50%以上、30.0%以下、又は0.50%以上、10.0%以下)のシェル層)を含むCS粒子とを含むこととしてもよい。
 また、本組成物及び本被覆材が、上述のような特定の重量比率の特定のTPUと、PE難燃剤と、上記少なくとも一部が架橋されたシェル層のいずれかを含むCS粒子とを含む場合、当該CS粒子は、41重量%以上、45重量%以上、又は50重量%以上のコア層を含むこととしてもよい。また、これらの場合、CS粒子は、98重量%以下、97重量%以下、96重量%以下、95重量%以下、又は94重量%以下の当該コア層を含んでもよく、さらに、84重量%以下、80重量%以下、又は75重量%以下の当該コア層を含んでもよい。
 なお、本組成物及び本被覆材は、例えば、ラジカル重合性化合物を含まないこととしてもよく、ラジカル重合開始剤を含まないこととしてもよく、硬化剤を含まないこととしてもよい。また、本組成物は、硬化性組成物ではないこととしてもよい。また、本被覆材の製造に使用される樹脂原料は、硬化性樹脂原料ではないこととしてもよい。
 本組成物の製造方法は、TPUと、PE難燃剤と、CS粒子とを混合することを含む。すなわち、本組成物は、TPUと、PE難燃剤と、CS粒子難燃剤とを混合することにより得られる混合物として製造される。
 また、本組成物の製造方法は、例えば、58.1重量部以上、73.9重量部以下(例えば、58.5重量部以上、73.5重量部以下)のTPUと、26.1重量部以上、41.9重量部以下(例えば、26.5重量部以上、41.5重量部以下)のCS粒子とからなる100重量部の樹脂成分と、42重量部以上、87重量部以下(例えば、43重量部以上、85重量部以下)のPE難燃剤と、を混合することを含むことが好ましい。
 また、本組成物の製造方法は、TPUと、当該TPU100重量部に対し、35.2重量部以上、72.3重量部以下(例えば、36.1重量部以上、70.9重量部以下)のCS粒子からなる難燃剤と、当該TPUと当該CS粒子との合計100重量部に対し、42重量部以上、87重量部以下(例えば、43重量部以上、85重量部以下)のPE難燃剤と、を混合することを含むことが好ましい。
 また、本組成物の製造方法は、TPUとPE難燃剤との合計100重量部に対し、21.9重量部以上、40.7重量部以下(例えば、22.4重量部以上、40.1重量部以下)のCS粒子からなる難燃剤を混合することを含むことが好ましい。また、本組成物の製造方法は、TPUと、当該TPU100重量部に対し63.2重量部以上、135.3重量部以下(例えば、66.2重量部以上、130.8重量部以下)のPE難燃剤と、当該TPUと当該PE難燃剤との合計100重量部に対し、23.0重量部以上、40.7重量部以下(例えば、30.6重量部以上、40.1重量部以下)のCS粒子からなる難燃剤とを混合することを含むことも好ましい。また、本組成物の製造方法は、TPUと、当該TPU100重量部に対し64.3重量部以上、76.9重量部以下のPE難燃剤と、当該TPUと当該PE難燃剤との合計100重量部に対し、26.1重量部以上、40.1重量部以下のCS粒子からなる難燃剤とを混合することを含むことも好ましい。
 本組成物の製造方法における混合は、例えば、ヘンシェルミキサー、リボンブレンダー、タンブラー、マゼラー、バンバリーミキサー、ニーダー、押出機、ミキシングロール等の混合装置を使用して行われる。
 本被覆材の製造方法は、TPUと、PE難燃剤と、CS粒子とを含む樹脂原料を成形することを含む。本被覆材の製造方法は、58.1重量部以上、73.9重量部以下(例えば、58.5重量部以上、73.5重量部以下)のTPUと、26.1重量部以上、41.9重量部以下(例えば、26.5重量部以上、41.5重量部以下)のCS粒子とからなる100重量部の樹脂成分と、42重量部以上、87重量部以下(例えば、43重量部以上、85重量部以下)のPE難燃剤と、を含む樹脂原料を成形することを含むことが好ましい。
 また、本被覆材の製造方法は、TPUと、当該TPU100重量部に対し、35.2重量部以上、72.3重量部以下(例えば、36.1重量部以上、70.9重量部以下)のCS粒子からなる難燃剤と、当該TPUと当該CS粒子との合計100重量部に対し、42重量部以上、87重量部以下(例えば、43重量部以上、85重量部以下)のPE難燃剤と、を含む樹脂原料を成形することを含むことが好ましい。
 また、本被覆材の製造方法は、TPUとPE難燃剤との合計100重量部に対し、21.9重量部以上、40.7重量部以下(例えば、22.4重量部以上、40.1重量部以下)のCS粒子からなる難燃剤を含む樹脂原料を成形することを含むことが好ましい。また、本被覆材の製造方法は、TPUと、当該TPU100重量部に対し63.2重量部以上、135.3重量部以下(例えば、66.2重量部以上、130.8重量部以下)のPE難燃剤と、当該TPUと当該PE難燃剤との合計100重量部に対し、23.0重量部以上、40.7重量部以下(例えば、30.6重量部以上、40.1重量部以下)のCS粒子からなる難燃剤とを含む樹脂原料を成形することを含むことも好ましい。また、本被覆材の製造方法は、TPUと、当該TPU100重量部に対し64.3重量部以上、76.9重量部以下のPE難燃剤と、当該TPUと当該PE難燃剤との合計100重量部に対し、26.1重量部以上、40.1重量部以下のCS粒子からなる難燃剤とを含む樹脂原料を成形することを含むことも好ましい。
 本被覆材の製造方法における成形には、例えば、射出成形、押出成形、ブロー成形、ロール成形、又はプレス成形が使用される。本被覆材の形状は特に限られず、例えば、シート状(シート、フィルム及びテープ等を含む)又は筒状である。
 具体的に、例えば、加熱により溶融した樹脂原料を押出機から押し出して、フィルム状の被覆材を製造し、次いで、当該フィルム状の被覆材で導体を被覆する(例えば、当該フィルム状の被覆材を導線に巻きつける)ことにより、当該導体を被覆する本被覆材を製造することとしてもよい。また、例えば、加熱により溶融した樹脂原料を押出機から導体の外周に押し出すことにより、当該導体を被覆する本被覆材を製造することとしてもよい。
 本組成物は、優れた難燃性を有する。このため、本組成物は、優れた難燃性が要求される用途に好ましく適用され、高度の難燃性が要求される用途に特に好ましく使用される。
 本被覆材は、優れた難燃性を有する。すなわち、本被覆材は、例えば、CS粒子について上述した難燃性試験において、当該本被覆材の試験片に当該バーナー炎を初めて接触させた後の当該時間(1回目の消炎時間)が、15秒以下であることとしてもよい。
 次に、本実施形態に係る具体的な実施例について説明する。
[熱可塑性ポリウレタン系樹脂組成物(樹脂原料)の製造]
 TPUとして、180℃の流動開始点を有するアジペート系TPUを使用した。リン酸エステル系難燃剤として、トリキシレニルホスフェートを使用した。CS粒子として、アクリルゴムから構成されるコア層89重量%と、架橋度が0.50%のアクリル系共重合体から構成されるシェル層11重量%とを含むコアシェルゴム粒子(一次粒子の体積平均粒子径は187nm)を使用した。すなわち、CS粒子としては、1つのコア層と、1つのシェル層とから構成されるものを使用した。
 CS粒子の製造においては、まずコア層を構成するアクリルゴム粒子のラテックスを製造した。すなわち、温度計と、撹拌機と、窒素流入口と、単量体及び乳化剤の添加装置とを有するガラス製容器に、脱イオン水200重量部、及び数平均粒子径が目標値となる量のポリオキシエチレンアルキルエーテルリン酸ナトリウム0.02重量部を仕込み、窒素気流中で撹拌しながら40℃に昇温した。次にアクリル酸ブチル4.975重量部、アリルメタクリレート0.025重量部、及びクメンハイドロパーオキサイド0.02重量部の混合物を仕込み、その10分後にエチレンジアミン四酢酸二ナトリウム0.006重量部、硫酸第一鉄・7水和塩0.001重量部、及びホルムアルデヒドスルホキシル酸ナトリウム0.2重量部を仕込んだ。60分撹拌後、そこにポリオキシエチレンアルキルエーテルリン酸ナトリウム0.1重量部を仕込んだ。10分撹拌後、そこにアクリル酸ブチル94.525重量部、アリルメタクリレート0.475重量部及びクメンハイドロパーオキサイド0.2重量部からなる単量体の混合物を360分かけて滴下した。また、上記単量体混合物の添加とともに、1.0重量部のポリオキシエチレンアルキルエーテルリン酸ナトリウムを360分にわたり連続的に追加した。単量体混合物の添加終了後、転化率が98重量%を超えるまで撹拌を続け、ガラス転移温度-54℃のアクリルゴム粒子のゴムラテックスを得た。
 次に、シェル層を形成した。すなわち、上述のゴムラテックスを製造後、温度を50℃に調整し、メタクリル酸メチル11.68重量部、アクリル酸ブチル0.618重量部、メタクリル酸アリル0.062重量部、及びクメンハイドロパーオキサイド0.006175重量部を含む混合物を1時間あたり25重量部で連続的に添加した。添加終了後、クメンハイドロパーオキサイド0.1重量部を添加し、重合転化率が98%以上になるまで撹拌を続けて重合を完結させた。こうして、0.50重量%のメタクリル酸アリルと、5.00重量%のアクリル酸ブチルと、残りのメタクリル酸メチルとから構成される原料の重合により得られる共重合体であって、ガラス転移温度が91.6℃の共重合体から構成される架橋シェル層を含むコアシェルゴム粒子のラテックスを得た。
 さらに、コアシェルゴム粒子ラテックスを、加圧ノズルの一種である旋回流式円錐ノズル(ノズル径0.6mm)を用い、噴霧圧力3.7kg/cmにて、塔底部液面からの高さ10m、直径60cmの円筒状の装置中に、体積平均液滴径が約200μmの液滴となるように噴霧した。それと同時に、35重量%濃度の塩化カルシウム水溶液を、塩化カルシウム固形分がコアシェルゴム粒子固形分100重量部に対し5~15重量部となるように二流体ノズルにて空気と混合しながら、液滴径0.1~10μmで噴霧した。塔内を落下したラテックス液滴は、塔底部にて受槽に投入され、これを回収した。
 得られたコアシェルゴム粒子スラリーに、5重量%濃度のパルミチン酸カリウム水溶液をパルミチン酸カリウム固形分がコアシェルゴム粒子固形分100重量部に対し1重量部となるよう添加し、熱処理した後、脱水し、脱水パウダーを得た。その後、1000重量部の脱イオン水と脱水パウダーとを混合し、10分撹拌後、脱水の操作を2回繰り返した後、窒素気流下50℃で乾燥させ、コアシェルゴム粒子パウダーを得た。
 そして、ミキシングロール(温度170℃~180℃)を用いて、TPUと、PE難燃剤と、CS粒子とを、異なる19の配合比率で混合することにより、これらの混合物として、組成の異なる19種類の熱可塑性ポリウレタン系樹脂組成物(樹脂原料)を製造した。
[導体被覆材の製造]
 上述のようにして得られた熱可塑性ポリウレタン系樹脂組成物(樹脂原料)を成形することにより、導体被覆材を製造した。すなわち、溶融混練した樹脂原料のロールシートをプレス成形(175℃、5分、200MPa加圧)にて成形し、組成の異なる19種類のシート状の導体被覆材を製造した。
[難燃性試験]
 上述のようにして製造した導体被覆材(熱可塑性ポリウレタン系樹脂組成物の試験片)について、下記のとおり難燃性試験を行った。すなわち、導体被覆材のシート(熱可塑性ポリウレタン系樹脂組成物から製造したシート)を打抜刃にて打ち抜いて作製した試験片(125mm×13mm×3mm)と、UL燃焼試験機であるHVUL試験機(アトラス社製)とを用いて、次のようにして難燃性試験を行った。(1)まず上記試験片の長手方向の一方端が上側に、他方端が下側となるよう、当該試験片の上端をクランプに固定することにより、当該試験片を垂直に吊り下げた。(2)次いで、20mmのバーナー炎を用意し、当該バーナー炎の上部10mmを当該試験片の下端の中心部に10秒間接触させた。(3)その後、当該バーナー炎を当該試験片から離した時点から、当該試験片の炎が消えるまでの時間(消炎時間)を測定した。また、消炎時間の測定時に、試験片のドリップの発生の有無も確認した。なお、バーナー炎を試験片から離した後、当該試験片が全く燃えなかった場合、消炎時間はゼロ秒とした。また、1回目の消炎時間が測定された後の試験片(炎が消えた試験片)に、上記の要領でバーナー炎を再び接触させ、同様に消炎時間及びドリップ発生の有無を確認し、これを2回目の測定結果とした。このような難燃性試験を各試験片について2回ずつ行った。
[結果]
 図5Aには、例1A-1から例1A-19のそれぞれについて、配合(TPU、PE難燃剤及びCS粒子の重量部)と、難燃性試験の結果とを示す。また、図5Bには、例1B-1から例1B-19のそれぞれについて、TPUとPE難燃剤との合計100重量部に対するCS粒子の重量部と、難燃性試験の結果とを示す。なお、図5Bにおいて、例1B-1から例1B-19は、それぞれ図5Aの例1A-1から例1A-19に対応し、TPUとPE難燃剤との合計100重量部に対するCS粒子の重量部は、図5Aに示すTPU、PE難燃剤及びCS粒子の重量部から算出した値である。
 図5A及び図5Bの「難燃試験」欄の「1回目」に示される消炎時間は、上記難燃性試験において、試験片にバーナー炎を初めて接触させた後の消炎時間である。また、「難燃試験」欄の「2回目」に示される消炎時間は、上記1回目の消炎時間が測定された後の試験片(炎が消えた試験片)に、再びバーナー炎を接触させた後の消炎時間である。また、「消炎時間(秒)」欄において、「DR」はドリップが発生したことを示し、「BO」は燃え尽きが生じたことを示し、「-」は測定できなかったことを示す。また、「ランク」欄には、消炎時間が0~15秒の場合をランク「A」、消炎時間が16~40秒の場合をランク「B」、消炎時間が41~80秒の場合をランク「C」、消炎時間が81秒以上をランク「D」、及びドリップ又は燃え尽きが生じた場合をランク「E」とランク付けした結果を示す。なお、1回目の消炎時間が「A」であり、2回目の消炎時間が「A」、「B」又は「C」である場合には、極めて優れた難燃性が確認されたこととなる。すなわち、導体被覆材等の熱可塑性ポリウレタン系樹脂成形体に火がついた場合、最初に火がついた後すぐに火が消えれば、その後に火が広がり被害が拡大することを効果的に回避できる。したがって、最初に火がついた後、その火が消えるまでの時間が極めて短いこと、すなわち、難燃性試験において1回目の消炎時間がランクAに該当するほど短いことが非常に重要である。
 図5Aの例1A-1及び図5Bの例1B-1では、試験片の一部が燃えながら溶融して落下するドリップが発生した。図5Aの例1A-2から例1A-4及び図5Bの例1B-2から例1B-4では、2回目の試験において、試験片が燃え尽きた。また、図5Aの例1A-16から例1A-19及び図5Bの例1B-16から例1B-19では、1回目の試験において、試験片が燃え尽きた。
 一方、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材が、58.5重量部以上、73.5重量部以下のTPUと、26.5重量部以上、41.5重量部以下のCS粒子とを、当該TPUの重量部と当該CS粒子の重量部との合計が100重量部となるように含んでいた(熱可塑性ポリウレタン系樹脂組成物及び導体被覆材が、TPUとPE難燃剤との合計100重量部に対し、22.4重量部以上、40.1重量部以下のCS粒子を含んでいた)図5Aの例1A-5から例1A-15及び図5Bの例1B-5から例1B-15では、1回目の試験における消炎時間が0~6秒という極めて短時間であり、且つ2回目の試験でも試験片は燃え尽きなかった。
 すなわち、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材が、図5Aの例1A-5から例1A-15及び図5Bの例1B-5から例1B-15のような特定の配合比率でTPU,CS粒子及びPE難燃剤を含むことにより、当該熱可塑性ポリウレタン系樹脂組成物及び導体被覆材体は、極めて高い難燃性を示した。
 また、さらに、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材が、図5Aの例1A-5から例1A-13及び図5Bの例1B-5から例1B-13のより限定された配合比率でTPU,CS粒子及びPE難燃剤を含む場合には、1回目の消炎時間が「A」、2回目の消炎時間が「C」であり、当該熱可塑性ポリウレタン系樹脂組成物及び導体被覆材体は、より高い、極めて優れた難燃性を示した。
[熱可塑性ポリウレタン系樹脂組成物(樹脂原料)の製造]
 上述の実施例1と同様にして、主にPE難燃剤の配合量を変えて、16種類の熱可塑性ポリウレタン系樹脂組成物(樹脂原料)を製造した。
[導体被覆材の製造]
 上述の実施例1と同様にして、16種類の導体被覆材を製造した。
[難燃性試験]
 上述の実施例1と同様にして、導体被覆材(熱可塑性ポリウレタン系樹脂組成物の試験片)の難燃性試験を行った。
[結果]
 図6には、上述の図5Aと同様に、例2-1から例2-17のそれぞれについて、導体被覆材の配合と、難燃性試験の結果とを示す。なお、図6では、例2-8として、100重量部の樹脂成分(TPUとのCS粒子との合計)に対して45重量部のPE難燃剤を配合した上述の例1-9の結果を示している。
 例2-1から例2-4では、1回目の試験において、試験片が燃え尽きた。例2-5及び例2-6では、2回目の試験において、試験片が燃え尽きた。また、100重量部の樹脂成分に対して88重量部以上のPE難燃剤を配合した例2-16及び例2-17では、混練することができず、導体被覆材(熱可塑性ポリウレタン系樹脂組成物の試験片)を製造することができなかった。
 一方、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材が、TPUとCS粒子とからなる100重量部の樹脂成分に対し、43重量部以上、85重量部以下のPE難燃剤を含む(熱可塑性ポリウレタン系樹脂組成物及び導体被覆材が、TPU100重量部に対して66.2重量部以上、130.8重量部以下のPE難燃剤を含む)例2-7から例2-15では、1回目の試験における消炎時間が0~2秒という極めて短時間であり、且つ2回目の試験でも試験片は燃え尽きなかった。
 すなわち、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材が、例2-7から例2-15のような特定の配合比率でTPU、CS粒子及びPE難燃剤を含むことにより、当該熱可塑性ポリウレタン系樹脂組成物及び導体被覆材は、極めて高い難燃性を示した。
[熱可塑性ポリウレタン系樹脂組成物(樹脂原料)の製造]
 TPUとして、180℃の流動開始点を有するアジペート系TPUを使用した。リン酸エステル系難燃剤として、トリキシレニルホスフェートを使用した。CS粒子として、アクリルゴムから構成されるコア層と、架橋されていないアクリル系共重合体から構成されるシェル層とを、異なる重量比率で含む10種類のコアシェルゴム粒子(一次粒子の体積平均粒子径は、181nm~188nm)を使用した。すなわち、CS粒子としては、1つのコア層と、1つのシェル層とから構成されるものを使用した。
 なお、CS粒子のシェル層を構成する架橋されていないアクリル系共重合体は、メタクリル酸アリルを使用しない以外は上述の実施例1と同様にして、メタクリル酸メチルとアクリル酸ブチルとの共重合により形成した。また、CS粒子におけるコア層の割合(重量%)を変化させる際には、当該CS粒子のシェル層を構成する共重合体の組成比率は維持した。すなわち、例えば、85重量%のコア層と、15重量%のシェル層とから構成されるCS粒子を製造する場合には、コア層100重量部に対して、シェル層は17.65重量部(=15×100/85)となる。ここで、本実施例においてシェル層の架橋度は0%であるから、メタクリル酸アリルの量は0重量部(=17.65重量部×0重量%)とし、アクリル酸ブチルの量は0.883重量部(=17.65重量部×5重量%)とし、メタクリル酸メチルの量は残りの16.767重量部(=17.65重量部-0.883重量部)とした。そして、上述の実施例1と同様にして、14種類の熱可塑性ポリウレタン系樹脂組成物(樹脂原料)を製造した。
[導体被覆材の製造]
 上述の実施例1と同様にして、14種類の導体被覆材を製造した。
[CS粒子のショアA硬度測定]
 また、使用された各CS粒子のショアA硬度を測定した。すなわち、JIS K 6253-3:2012(加硫ゴム及び熱可塑性ゴム-硬さの求め方- 第三部:デュロメータ硬さ)に準拠した方法において、次の条件にて、単一種類のCS粒子から構成される試験片のショアA硬度を測定した。試験機としては、タイプAデュロメータ(高分子計器株式会社製 アスカーゴム硬度計A型、定圧荷重器CL‐150L型(荷重1.0kg))を使用した。自動タイマ装置は使用しなかった。試験片としては、厚さ1.0mm以上、1.5mm以下のシート(30mm×40mm)(導体被覆材)を6枚積み重ねて得られる積層体を使用した。この試験片は、測定前に、温度23℃、相対湿度50%で24時間以上、状態調節を行った。その後、試験片のショアA硬度の測定を、温度23℃、相対湿度50%にて、加圧板を当該試験片に接触させてから10秒後の測定値を読み取ることにより行った。なお、押針先端は試験片の端から12.0mm以上離れた位置で測定した。また、測定点は5回とし、5つの測定値の中央値(5つの測定値のうち3番目に高い値)をショアA硬度の値として採用した。
[難燃性試験]
 上述の実施例1と同様にして、導体被覆材(熱可塑性ポリウレタン系樹脂組成物の試験片)の難燃性試験を行った。
[結果]
 図7には、上述の図5Aと同様に、例3-1から例3-14のそれぞれについて、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の配合と、難燃性試験の結果とを示す。図7の配合欄において、「CS-ACR」の右側に付された数字は、CS粒子のコア層の重量%を示す。すなわち、例えば、「CS-ACR89.0」は、89.0重量%のコア層を含むCS粒子を示す。
 99.0重量%のコア層を含むCS粒子を使用した例3-1では、1回目の試験において、試験片が燃え尽きた。また、40.0重量%のコア層を含むCS粒子を使用した例3-14では、2回目の試験において、試験片のドリップが発生した。
 一方、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材が、50.0~94.0重量%のコア層を含むCS粒子を含んでいた例3-2から例3-13では、試験片は燃え尽きなかった。
 すなわち、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材が、50.0~94.0重量%のコア層を含むCS粒子を含むことにより、当該熱可塑性ポリウレタン系樹脂組成物及び導体被覆材は、高い難燃性を示した。
 さらに、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材が、50.0~82.0重量%のコア層を含むCS粒子を含んでいた例3-7から例3-12では、1回目の試験における消炎時間が0~1秒という極めて短時間であり、且つ2回目の試験でも試験片は燃え尽きなかった。
 すなわち、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材が50.0~82.0重量%のコア層を含むCS粒子を含むことにより、当該熱可塑性ポリウレタン系樹脂組成物及び導体被覆材は、極めて高い難燃性を示した。
 また、さらに、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材が60.0~82.0重量%のコア層を含むCS粒子を含む例3-7から例3-10においては、1回目の消炎時間が「A」、2回目の消炎時間が「C」であり、当該熱可塑性ポリウレタン系樹脂組成物及び導体被覆材体は、より高い、極めて優れた難燃性を示した。なお、これら例3-7から例3-10で使用された、60.0~82.0重量%のコア層を含むCS粒子のショアA硬度は、85~90であった。
[熱可塑性ポリウレタン系樹脂組成物(樹脂原料)の製造]
 TPUとして、180℃の流動開始点を有するアジペート系TPUを使用した。リン酸エステル系難燃剤として、トリキシレニルホスフェートを使用した。CS粒子として、アクリルゴムから構成されるコア層と、架橋度が異なるアクリル系共重合体から構成されるシェル層とを含む5種類のコアシェルゴム粒子を使用した。すなわち、CS粒子としては、1つのコア層と、1つのシェル層とから構成されるものを使用した。なお、使用したコアシェルゴム粒子は、いずれもコア層を89.0重量%含むものであった。
 CS粒子のシェル層の架橋度は、上述の実施例1におけるCS粒子の製造方法において、シェル層の形成に使用されるメタクリル酸メチル、アクリル酸ブチル及びメタクリル酸アリルの比率により調節した。そして、上述の実施例1と同様にして、11種類の熱可塑性ポリウレタン系樹脂組成物(樹脂原料)を製造した。
[導体被覆材の製造]
 上述の実施例1と同様にして、11種類の導体被覆材を製造した。
[難燃性試験]
 上述の実施例1と同様にして、導体被覆材(熱可塑性ポリウレタン系樹脂組成物の試験片)の難燃性試験を行った。
[結果]
 図8には、上述の図5Aと同様に、例4-1から例4-11のそれぞれについて、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の配合と、難燃性試験の結果とを示す。図8の配合欄において、「CS-SC」の右側に付された数字は、CS粒子のシェル層の架橋度(%)を示す。すなわち、例えば、「CS-SC0.50」は、架橋度が0.50%のシェル層を含むCS粒子を示す。なお、図8では、例4-1として、架橋されていないシェル層(すなわち、架橋度がゼロ%のシェル層)を含むCS粒子(CS-SC0)を使用した上述の例3-5の結果を示している。
 例4-1から例4-11のいずれにおいても、試験片は燃え尽きなかった。すなわち、例4-1から例4-11のいずれにおいても、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材は、高い難燃性を示した。また、架橋度が0.25%のシェル層を含むCS粒子を使用した例4-2の難燃性試験の結果は、架橋されていないシェル層を含むCS粒子を使用した例4-1と同程度であったが、架橋度が0.45~2.00%のシェル層を含むCS粒子を使用した例4-7から例4-11では、1回目の試験における消炎時間が、当該例4-1~例4-6のそれより顕著に短く、0~11秒であった。
 すなわち、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材が、例4-7から例4-11のような架橋度が0.45%以上(より具体的には、0.45%以上、2.00%以下)のシェル層を含むCS粒子を含む場合には、1回目の消炎時間が「A」、2回目の消炎時間が「C」であり、当該熱可塑性ポリウレタン系樹脂組成物及び導体被覆材は、極めて優れた難燃性を示した。
[熱可塑性ポリウレタン系樹脂組成物(樹脂原料)の製造]
 TPUとして、180℃の流動開始点を有するアジペート系TPUを使用した。リン酸エステル系難燃剤として、トリキシレニルホスフェートを使用した。CS粒子として、ブタジエンゴム又はスチレンブタジエンゴムから構成されるコア層と、架橋されていないアクリル系共重合体から構成されるシェル層とを、異なる重量比率で含む11種類のコアシェルゴム粒子、及びシリコンゴム(ポリジメチルシロキサン-ポリ-n-ブチルアクリレート複合ゴム)から構成されるコア層と、架橋されていないアクリル系共重合体(ポリ(メチルメタクリレート))から構成されるシェル層とを含む市販のコアシェルゴム粒子(ポリジメチルシロキサンゴム70重量%)(メタブレンSX005、三菱レイヨン株式会社製)の合計12種類のコアシェルゴム粒子(一次粒子の体積平均粒子径は、181nm~191nm)を使用した。すなわち、コアシェルゴム粒子としては、1つのコア層と、1つのシェル層とから構成されるものを使用した。
 コア層を構成するブタジエンゴム粒子は、次のようにして製造した。すなわち、温度計と、撹拌機と、窒素流入口と、単量体及び乳化剤の添加装置とを有する耐圧容器に脱イオン水200重量部、エチレンジアミン4酢酸2ナトリウム塩0.002重量部、硫酸第一鉄0.0012重量部、エチレンジアミンテトラ酢酸ジナトリウム塩0.008重量部、及び数平均粒子径が目標値となる量のポリオキシエチレンアルキルエーテルリン酸ナトリウムを仕込み、脱酸・窒素置換した後に、ブタジエン100重量部、ナトリウムホルムアルデヒドスルホキシレート0.05重量部、及びパラメンタンハイドロパーオキサイド0.2重量部を添加し、それから6時間かけてポリオキシエチレンアルキルエーテルリン酸ナトリウムを1.4重量部滴下した後、転化率が97重量%を超えるまで保持し、ナトリウムホルムアルデヒドスルホキシレート0.1重量部を添加し、ガラス転移温度が-80℃のブタジエンゴム粒子のゴムラテックスを得た。
 コア層を構成するスチレンブタジエンゴム粒子は、次のようにして製造した。すなわち、温度計と、撹拌機と、窒素流入口と、単量体及び乳化剤の添加装置とを有する耐圧容器に、脱イオン水200重量部、エチレンジアミン4酢酸2ナトリウム塩0.002重量部、硫酸第一鉄0.0012重量部、エチレンジアミンテトラ酢酸ジナトリウム塩0.008重量部、及び数平均粒子径が目標値となる量のポリオキシエチレンアルキルエーテルリン酸ナトリウムを仕込み、脱酸・窒素置換した後に、ブタジエン75重量部、スチレン25重量部、ナトリウムホルムアルデヒドスルホキシレート0.05重量部、及びパラメンタンハイドロパーオキサイド0.2重量部を添加し、それから6時間かけてポリオキシエチレンアルキルエーテルリン酸ナトリウムを1.4部滴下した後、転化率が97重量%を超えるまで保持し、ガラス転移温度が-53.5℃のスチレンブタジエンゴム粒子のゴムラテックスを得た。
 本実施例ではシリコンゴム粒子から構成されるコア層を有するCS粒子として上述のとおり市販のものを使用したが、コア層を構成するシリコンゴム粒子は、例えば、次のようにして製造される。すなわち、脱イオン水、ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸、末端ヒドロキシオルガノポリシロキサン(東レ・ダウコーニング・シリコーン株式会社製 商品名:PRX413)85重量部、及びγ-メタクリロイルオキシプロピルメチルジメトキシシラン2.55重量部からなる混合液を、T.K.ロボミックスにより、目標の数平均粒子径が得られる回転数で10分間機械剪断を与え、乳化液を調製する。
 得た乳化液を、温度計と、撹拌機と、窒素流入口と、単量体及び乳化剤の添加装置とを有するガラス製容器に、脱イオン水200重量部とともに添加し、撹拌しながら、25℃で24時間反応させる。その後、系のpHを水酸化ナトリウムで6.8に調節する。次にエチレンジアミン4酢酸2ナトリウム塩0.006重量部、硫酸第一鉄・7水和物0.001重量部、及びナトリウムホルムアルデヒドスルホキシレート0.2重量部を加えた後、トリアリルイソシアヌレート2重量部、及びクメンハイドロパーオキサイド0.01重量部を加え、3時間重合し、ガラス転移温度が-110℃のシリコンゴム粒子のゴムラテックスを得る。
 そして、上述の実施例1と同様に、コア層を構成する各ゴム粒子を使用して、シェル層を形成することにより、コアシェルゴム粒子のラテックスを製造した。すなわち、ブタジエンゴムから構成されるコア層を含むCS粒子のシェル層を構成する架橋されていないアクリル系共重合体は、メタクリル酸アリルを使用しない以外は上述の実施例1と同様にして、メタクリル酸メチルとアクリル酸ブチルとの共重合によりガラス転移温度が91.6℃の共重合体として形成した。また、スチレンブタジエンゴムから構成されるコア層を含むCS粒子のシェル層を構成する架橋されていないアクリル系共重合体は、メタクリル酸アリルを使用せず、且つアクリル酸ブチルに代えてスチレンを使用した以外は上述の実施例1と同様にして、メタクリル酸メチルとスチレンとの共重合によりガラス転移温度が104.7℃の共重合体として形成した。なお、シリコンゴムから構成されるコア層を含むCS粒子のシェル層を構成する架橋されていないアクリル系共重合体もまた、同様に、メタクリル酸メチルとアクリル酸ブチルとの共重合、又はメタクリル酸メチルとスチレンとの共重合により形成することができる。次いで、上述の実施例1と同様に、コアシェルゴム粒子パウダーを得た。さらに、上述の実施例1と同様にして、12種類の樹脂原料を製造した。
[導体被覆材の製造]
 上述の実施例1と同様にして、12種類の導体被覆材を製造した。
[難燃性試験]
 上述の実施例1と同様にして、導体被覆材(熱可塑性ポリウレタン系樹脂組成物の試験片)の難燃性試験を行った。
[結果]
 図9には、上述の図5Aと同様に、例5-1から例5-12のそれぞれについて、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の配合と、難燃性試験の結果とを示す。図9の配合欄において、「CS-BR」は、ブタジエンゴムのコア層を含むCS粒子を示し、「CS-SBR」は、スチレンブタジエンゴムのコア層を含むCS粒子を示し、「CS-SiR」は、シリコンゴムのコア層を含むCS粒子を示す。また、「CS-BR」、「CS-SBR」及び「CS-SiR」の右側に付された数字は、CS粒子のコア層の重量%を示す。すなわち、例えば、「CS-SBR70」は、スチレンブタジエンゴムのコア層を70重量%含むCS粒子を示す。
 図9に示すように、ブタジエンゴムのコア層を63.0~78.0重量%含むCS粒子を使用した例5-1から例5-5、スチレンブタジエンゴムのコア層を45~75重量%含むCS粒子を使用した例5-6から例5-11、及びシリコンゴムのコア層70重量%を含むCS粒子を使用した例5-12のいずれにおいても、試験片は燃え尽きなかった。
 特に、スチレンブタジエンゴムのコア層を含むCS粒子を使用した場合には、1回目の消炎時間が0~3秒と短かった。ただし、上述の実施例3及び実施例4の結果より、アクリルゴムのコア層を含むCS粒子を使用した場合の方が、スチレンブタジエンゴムのコア層を含むCS粒子を使用した場合に比べて、高い難燃性が示された。
[熱可塑性ポリウレタン系樹脂組成物(樹脂原料)の製造]
 TPUとして、180℃の流動開始点を有するアジペート系TPUを使用した。リン酸エステル系難燃剤として、トリキシレニルホスフェートを使用した。CS粒子は使用せず、代わりに、コアシェル構造を有しない樹脂粒子を使用した。すなわち、市販されている、PMMA(ポリメタクリル酸メチル)粒子、NBR(アクリロニトリルブタジエンゴム)粒子、EVA(エチレン-酢酸ビニル共重合体)粒子又はEEA(エチレン-エチルアクリレート共重合体)粒子を使用した。そして、上述の実施例1と同様にして、4種類の熱可塑性ポリウレタン系樹脂組成物(樹脂原料)を製造した。
[導体被覆材の製造]
 上述の実施例1と同様にして、4種類の導体被覆材を製造した。
[難燃性試験]
 上述の実施例1と同様にして、導体被覆材(熱可塑性ポリウレタン系樹脂組成物の試験片)の難燃性試験を行った。
[結果]
 図10には、上述の図5Aと同様に、例6-1から例6-4のそれぞれについて、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の配合と、難燃性試験の結果とを示す。例6-1から例6-4のいずれにおいても、1回目の試験で試験片のドリップが発生した。すなわち、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材が、例6-1から例6-4のように、コアシェル構造を有しない樹脂粒子を含み、CS粒子を含まない場合、当該熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の難燃性は極めて低かった。
[熱可塑性ポリウレタン系樹脂組成物(樹脂原料)の製造]
 TPUとして、180℃の流動開始点を有するアジペート系TPUを使用した。リン酸エステル系難燃剤としては、化学構造が異なる7種類の市販のリン酸エステルを使用した。CS粒子として、アクリルゴムから構成されるコア層89重量%と、架橋度が0.50%のアクリル系共重合体から構成されるシェル層11重量%とを含むコアシェルゴム粒子を使用した。すなわち、CS粒子としては、1つのコア層と、1つのシェル層とから構成されるものを使用した。そして、上述の実施例1と同様にして、7種類の熱可塑性ポリウレタン系樹脂組成物(樹脂原料)を製造した。
[導体被覆材の製造]
 上述の実施例1と同様にして、7種類の導体被覆材を製造した。
[難燃性試験]
 上述の実施例1と同様にして、導体被覆材(熱可塑性ポリウレタン系樹脂組成物の試験片)の難燃性試験を行った。
[結果]
 図11には、上述の図5Aと同様に、例7-1から例7-7のそれぞれについて、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の配合と、難燃性試験の結果とを示す。なお、図11では、例7-1として、リン酸エステル系難燃剤として、トリキシレニルホスフェートを使用した上述の例1-9の結果を示している。図11において、「PE-I」は、トリキシレニルホスフェートを示し、「PE-II」は、トリクレジルホスフェートを示し、「PE-III」は、トリフェニルホスフェートを示し、「PE-IV」は、(1,3-フェニレンジオキシ)ビス(ホスホン酸ジフェニル)を示し、「PE-V」は、クレジルジ2,6-キシレニルホスフェートを示し、「PE-VI」は、リン原子及び酸素原子を含む複素環を含む縮合リン酸エステルを示し、「PE-VII」は、トリエチルホスフェートを示し、「PE-IX」は、分子内に4つのキシレニル基を含む芳香族縮合リン酸エステルを示す。
 図11に示すように、例7-1から例7―7のいずれにおいても、優れた難燃性を示す導体被覆材が得られた。すなわち、例7-1から例7―7で使用したリン酸エステルは、いずれも、リン酸エステル系難燃剤として使用できることが確認された。また、特に、例7-1、例7-2、例7-4、例7-6及び例7-7においては、1回目の消炎時間が「A」、2回目の消炎時間が「A」、「B」又は「C」であり、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材体は、極めて優れた難燃性を示した。
[熱可塑性ポリウレタン系樹脂組成物(樹脂原料)の製造]
 TPUとして、5種類のTPUを使用した。リン酸エステル系難燃剤として、トリキシレニルホスフェートを使用した。CS粒子として、アクリルゴムから構成されるコア層89重量%と、架橋度が0.50%のアクリル系共重合体から構成されるシェル層11重量%とを含むコアシェルゴム粒子を使用した。すなわち、CS粒子としては、1つのコア層と、1つのシェル層とから構成されるものを使用した。そして、上述の実施例1と同様にして、配合が異なる7種類の熱可塑性ポリウレタン系樹脂組成物(樹脂原料)を製造した。
[導体被覆材の製造]
 上述の実施例1と同様にして、7種類の導体被覆材を製造した。
[難燃性試験]
 上述の実施例1と同様にして、導体被覆材(熱可塑性ポリウレタン系樹脂組成物の試験片)の難燃性試験を行った。
[結果]
 図12には、上述の図5Aと同様に、例8-1から例8-7のそれぞれについて、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の配合と、難燃性試験の結果とを示す。なお、図12では、例8-1として、TPUとして、180℃の流動開始点を有するアジペート系TPUを使用した上述の例1-9の結果を示している。
 図12において、「TPU-I」は、180℃の流動開始点を有するポリエステル系(アジペート系)TPUを示し、「TPU-II」は、160℃の流動開始点を有するポリエステル系(アジペート系)TPUを示し、「TPU-III」は、190℃の流動開始点を有するポリエステル系(カプロラクトン系)TPUを示し、「TPU-IV」は、184℃の流動開始点を有するポリカーボネート系TPUを示し、「TPU-V」は、190℃の流動開始点を有するポリエーテル系TPUを示す。
 図12に示すように、例8-1から例8―7のいずれにおいても、優れた難燃性を示す導体被覆材(熱可塑性ポリウレタン系樹脂組成物の試験片)が得られた。また、特に、例8-1、例8-3、例8-5及び例8-7においては、1回目の消炎時間が「A」、2回目の消炎時間が「A」、「B」又は「C」であり、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材体は、極めて優れた難燃性を示した。なお、180℃の流動開始点を有するポリエステル系(アジペート系)TPUを使用した例8-1では、160℃の流動開始点を有するポリエステル系(アジペート系)TPUを使用した例8-2に比べて、高い難燃性が得られた。また、180℃の流動開始点を有するポリエステル系(アジペート系)TPUを使用した例8-1では、190℃の流動開始点を有するポリエーテル系TPUを使用した例8―6に比べて、高い難燃性が得られた。
[熱可塑性ポリウレタン系樹脂組成物(樹脂原料)の製造]
 TPUとして、180℃の流動開始点を有するアジペート系TPUを使用した。リン酸エステル系難燃剤として、トリキシレニルホスフェートを使用した。CS粒子として、アクリルゴムから構成される1つのコア層と、アクリル系共重合体から構成される1つのシェル層とから構成されるCS粒子(一次粒子の体積平均粒子径は、181nm~188nm)を使用した。
 CS粒子としては、コア層の含有量(重量%)及び/又はシェル層の架橋度(%)が異なる様々な種類のものを合成して使用した。CS粒子のシェル層の架橋度は、上述の実施例1におけるCS粒子の製造方法において、シェル層の形成に使用されるメタクリル酸メチル、アクリル酸ブチル及びメタクリル酸アリルの比率により調節した。シェル層の架橋度が0(ゼロ)(%)の場合、CS粒子のシェル層を構成する架橋されていないアクリル系共重合体は、メタクリル酸アリルを使用しない以外は上述の実施例1と同様にして、メタクリル酸メチルとアクリル酸ブチルとの共重合により形成した。
 そして、上述の実施例1と同様にして、65重量部のTPUと、35重量部のCS粒子とからなる100重量部の樹脂成分と、45重量部のPE難燃剤と、を含む熱可塑性ポリウレタン系樹脂組成物(樹脂原料)を製造した。
[導体被覆材の製造]
 上述の実施例1と同様にして、導体被覆材を製造した。
[難燃性試験]
 上述の実施例1と同様にして、導体被覆材(熱可塑性ポリウレタン系樹脂組成物の試験片)の難燃性試験を行った。
[CS粒子のショアA硬度測定]
 また、上述の実施例2と同様にして、使用された各CS粒子のショアA硬度を測定した。
[結果]
 図13には、使用されたCS粒子のコア層の含有量(重量%)及び/又はシェル層の架橋度(%)が異なる様々な例について、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材の難燃性試験の結果と、CS粒子のショアA硬度を測定した結果とを示す。
 図13において、各欄の上段には難燃性試験における消炎時間及びランクを示し、下段にはCS粒子のショアA硬度を示す。すなわち、例えば、89.0重量%のコア層と、架橋度が0.50%のシェル層11.0重量%とから構成されるCS粒子を使用した場合については、コア層の含有量が「89.0重量%」、且つシェル層の架橋度が「0.50%」の欄において、難燃性試験における1回目の消炎時間が0(ゼロ)秒でランクは「A」、且つ2回目の消炎時間は57秒でランクはCであったことが「A(0)/C(57)」として上段に示され、当該CS粒子のショアA硬度は67であったことが「<67>」として下段に示されている。
 CS粒子のシェル層が架橋されていない場合(架橋度が0(ゼロ)%の場合)には、上述の実施例3でも示されたとおり、当該CS粒子のコア層含有量が60.0重量%以上、82.0重量%以下の範囲において、当該CS粒子のショアA硬度は85以上、90以下であり、難燃性試験では1回目の消炎時間がランク「A」、且つ2回目の消炎時間がランク「C」であり、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材は、極めて優れた難燃性を示した。
 また、CS粒子のシェル層の架橋度が0.25%、0.35%及び0.42%の場合には、当該CS粒子のコア層含有量が85.0重量%において、難燃性試験における1回目の消炎時間がランク「A」、且つ2回目の消炎時間がランク「B」であり、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材は、極めて優れた難燃性を示した。
 また、CS粒子のシェル層の架橋度が0.45%の場合には、当該CS粒子のコア層含有量が89.0重量%において、難燃性試験における1回目の消炎時間がランク「A」、且つ2回目の消炎時間がランク「C」であり、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材は、極めて優れた難燃性を示した。
 また、CS粒子のシェル層の架橋度が0.50%及び2.00%の場合には、当該CS粒子のコア層含有量が89.5重量%において、難燃性試験における1回目の消炎時間がランク「A」、且つ2回目の消炎時間がランク「C」であり、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材は、極めて優れた難燃性を示した。
 また、CS粒子のシェル層の架橋度が0.50%の場合には、当該CS粒子のコア層含有量が52.0重量%において、難燃性試験における1回目の消炎時間がランク「A」、且つ2回目の消炎時間がランク「B」であり、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材は、極めて優れた難燃性を示した。
 また、CS粒子のシェル層の架橋度が2.00%の場合には、当該CS粒子のコア層含有量が50.0重量%において、難燃性試験における1回目の消炎時間がランク「A」、且つ2回目の消炎時間がランク「C」であり、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材は、極めて優れた難燃性を示した。
[熱可塑性ポリウレタン系樹脂組成物(樹脂原料)の製造]
 TPUとして、180℃の流動開始点を有するアジペート系TPUを使用した。リン酸エステル系難燃剤として、トリキシレニルホスフェートを使用した。CS粒子として、アクリルゴムから構成される1つのコア層75.0重量%と、架橋されていないアクリル系共重合体から構成される1つのシェル層とから構成されるCS粒子を使用した。
 そして、上述の実施例1と同様に、ミキシングロール(温度170℃~180℃)を用いて、TPUと、PE難燃剤と、CS粒子とを、異なる10種類の配合比率で混合することにより、これらの混合物として、組成の異なる10種類の熱可塑性ポリウレタン系樹脂組成物(樹脂原料)を製造した。
[導体被覆材の製造]
 上述の実施例1と同様にして、10種類の導体被覆材を製造した。
[難燃性試験]
 上述の実施例1と同様にして、導体被覆材(熱可塑性ポリウレタン系樹脂組成物の試験片)の難燃性試験を行った。
[結果]
 図14には、上述の図5Aと同様に、例10-1から例10-10のそれぞれについて、導体被覆材の配合と、難燃性試験の結果とを示す。
 図14に示されるように、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材が、60.0重量部以上、70.0重量部以下のTPUと、30.0重量部以上、40.0重量部以下のCS粒子とからなる100重量部の樹脂成分と、45重量部のPE難燃剤と、を含む例10-4~例10-6において、難燃性試験における1回目の消炎時間がランク「A」、且つ2回目の消炎時間がランク「C」であり、当該熱可塑性ポリウレタン系樹脂組成物及び導体被覆材は、極めて優れた難燃性を示した。
[熱可塑性ポリウレタン系樹脂組成物(樹脂原料)の製造]
 TPUとして、180℃の流動開始点を有するアジペート系TPUを使用した。リン酸エステル系難燃剤として、トリキシレニルホスフェートを使用した。CS粒子として、アクリルゴムから構成される1つのコア層75.0重量%と、架橋されていないアクリル系共重合体から構成される1つのシェル層25.0重量%とから構成されるCS粒子を使用した。
 そして、上述の実施例2と同様に、ミキシングロール(温度170℃~180℃)を用いて、TPUと、PE難燃剤と、CS粒子とを、当該PE難燃剤の配合量を変えて、異なる7種類の配合比率で混合することにより、これらの混合物として、組成の異なる7種類の熱可塑性ポリウレタン系樹脂組成物(樹脂原料)を製造した。
[導体被覆材の製造]
 上述の実施例1と同様にして、7種類の導体被覆材を製造した。
[難燃性試験]
 上述の実施例1と同様にして、導体被覆材(熱可塑性ポリウレタン系樹脂組成物の試験片)の難燃性試験を行った。
[結果]
 図15には、上述の図5Aと同様に、例11-1から例11-7のそれぞれについて、導体被覆材の配合と、難燃性試験の結果とを示す。
 図15に示されるように、熱可塑性ポリウレタン系樹脂組成物及び導体被覆材が、TPUとCS粒子とからなる100重量部の樹脂成分に対して、41重量部以上、85重量部以下のPE難燃剤を含む例11-3~例11-7において、難燃性試験における1回目の消炎時間がランク「A」、且つ2回目の消炎時間がランク「A」又は「C」であり、当該熱可塑性ポリウレタン系樹脂組成物及び導体被覆材は、極めて優れた難燃性を示した。

Claims (29)

  1.  58.1重量部以上、73.9重量部以下の熱可塑性ポリウレタン系樹脂と、26.1重量部以上、41.9重量部以下のコアシェル重合体粒子とからなる100重量部の樹脂成分と、
     42重量部以上、87重量部以下のリン酸エステル系難燃剤と、
     を含む
     ことを特徴とする熱可塑性ポリウレタン系樹脂組成物。
  2.  前記コアシェル重合体粒子は、1以上のコア層と1以上のシェル層とから構成され、
     前記コア層は、ガラス転移温度が40℃未満の重合体から構成される最外コア層を含み、
     前記シェル層は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、多官能性単量体とを含む原料の重合により得られる共重合体であってガラス転移温度が40℃以上の共重合体から構成される架橋シェル層を含み、
     前記コアシェル重合体粒子は、下記(a)~(d):
    (a)前記コア層と前記シェル層との合計100重量%に対して、50.1重量%以上、88.9重量%以下の前記コア層を含み、前記架橋シェル層の架橋度が0.05%以上、0.42%以下であるコアシェル重合体粒子;、
    (b)前記コア層と前記シェル層との合計100重量%に対して、50.1重量%以上、89.4重量%以下の前記コア層を含み、前記架橋シェル層の架橋度が0.42%超、0.45%以下であるコアシェル重合体粒子;、
    (c)前記コア層と前記シェル層との合計100重量%に対して、50.1重量%以上、90.4重量%以下の前記コア層を含み、前記架橋シェル層の架橋度が0.45%超、0.50%以下であるコアシェル重合体粒子;及び
    (d)前記コア層と前記シェル層との合計100重量%に対して、40.1重量%以上、90.4重量%以下の前記コア層を含み、前記架橋シェル層の架橋度が0.50%超、5.00%以下であるコアシェル重合体粒子;
     からなる群より選択される1種以上である
     ことを特徴とする請求項1に記載の熱可塑性ポリウレタン系樹脂組成物。
  3.  前記コアシェル重合体粒子は、少なくとも前記(a)を含む
     ことを特徴とする請求項2に記載の熱可塑性ポリウレタン系樹脂組成物。
  4.  前記コアシェル重合体粒子は、少なくとも前記(b)を含む
     ことを特徴とする請求項2又は3に記載の熱可塑性ポリウレタン系樹脂組成物。
  5.  前記コアシェル重合体粒子は、少なくとも前記(c)を含む
     ことを特徴とする請求項2乃至4のいずれかに記載の熱可塑性ポリウレタン系樹脂組成物。
  6.  前記コアシェル重合体粒子は、少なくとも前記(d)を含む
     ことを特徴とする請求項2乃至5のいずれかに記載の熱可塑性ポリウレタン系樹脂組成物。
  7.  前記架橋シェル層を構成する前記共重合体は、前記(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、前記多官能性単量体と、これらと共重合可能な不飽和単量体との共重合体である
     ことを特徴とする請求項2乃至6のいずれかに記載の熱可塑性ポリウレタン系樹脂組成物。
  8.  59.1重量部以上、73.9重量部以下の前記熱可塑性ポリウレタン系樹脂と、26.1重量部以上、40.9重量部以下の前記コアシェル重合体粒子とからなる100重量部の前記樹脂成分と、
     42重量部以上、87重量部以下の前記リン酸エステル系難燃剤と、
     を含む
     ことを特徴とする請求項2乃至7のいずれかに記載の熱可塑性ポリウレタン系樹脂組成物。
  9.  前記コアシェル重合体粒子は、1以上のコア層と1以上のシェル層とから構成され、前記コア層と前記シェル層との合計100重量%に対して、57.1重量%以上、82.0重量%以下の前記コア層を含む
     ことを特徴とする請求項1に記載の熱可塑性ポリウレタン系樹脂組成物。
  10.  前記コアシェル重合体粒子の、JIS K 6253-3:2012に準拠した方法であって、試験機としてタイプAデュロメータを使用し、自動タイマ装置を使用せず、厚さ1.0mm以上、1.5mm以下のシート(30mm×40mm)を6枚積み重ねて得られる積層体を試験片として使用し、前記試験片を温度23℃、相対湿度50%で24時間以上状態調節した後、温度23℃及び相対湿度50%にて、加圧板を前記試験片に接触させてから10秒後の測定値を読み取る方法にて測定されるショアA硬度が、81以上、100以下である
     ことを特徴とする請求項9に記載の熱可塑性ポリウレタン系樹脂組成物。
  11.  前記1以上のシェル層は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上を含み多官能性単量体を含まない原料の重合により得られる重合体であってガラス転移温度が40℃以上の重合体から構成される
     ことを特徴とする請求項9又は10に記載の熱可塑性ポリウレタン系樹脂組成物。
  12.  58.6重量部以上、73.4重量部以下の前記熱可塑性ポリウレタン系樹脂と、26.6重量部以上、41.4重量部以下の前記コアシェル重合体粒子とからなる100重量部の前記樹脂成分と、
     41重量部以上、87重量部以下の前記リン酸エステル系難燃剤と、を含む
     ことを特徴とする請求項11に記載の熱可塑性ポリウレタン系樹脂組成物。
  13.  前記1以上のシェル層を構成する前記重合体は、前記(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、これと共重合可能な不飽和単量体との共重合体である
     ことを特徴とする請求項11又は12に記載の熱可塑性ポリウレタン系樹脂組成物。
  14.  導体被覆材用熱可塑性ポリウレタン系樹脂組成物である
     ことを特徴とする請求項1乃至13のいずれかに記載の熱可塑性ポリウレタン系樹脂組成物。
  15.  58.1重量部以上、73.9重量部以下の熱可塑性ポリウレタン系樹脂と、26.1重量部以上、41.9重量部以下のコアシェル重合体粒子とからなる100重量部の樹脂成分と、
     42重量部以上、87重量部以下のリン酸エステル系難燃剤と、
     を混合することを含む
     ことを特徴とする熱可塑性ポリウレタン系樹脂組成物の製造方法。
  16.  58.1重量部以上、73.9重量部以下の熱可塑性ポリウレタン系樹脂と、26.1重量部以上、41.9重量部以下のコアシェル重合体粒子とからなる100重量部の樹脂成分と、
     42重量部以上、87重量部以下のリン酸エステル系難燃剤と、
     を含む
     ことを特徴とする導体被覆材。
  17.  前記コアシェル重合体粒子は、1以上のコア層と1以上のシェル層とから構成され、
     前記コア層は、ガラス転移温度が40℃未満の重合体から構成される最外コア層を含み、
     前記シェル層は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、多官能性単量体とを含む原料の重合により得られる共重合体であってガラス転移温度が40℃以上の共重合体から構成される架橋シェル層を含み、
     前記コアシェル重合体粒子は、下記(a)~(d):
    (a)前記コア層と前記シェル層との合計100重量%に対して、50.1重量%以上、88.9重量%以下の前記コア層を含み、前記架橋シェル層の架橋度が0.05%以上、0.42%以下であるコアシェル重合体粒子;、
    (b)前記コア層と前記シェル層との合計100重量%に対して、50.1重量%以上、89.4重量%以下の前記コア層を含み、前記架橋シェル層の架橋度が0.42%超、0.45%以下であるコアシェル重合体粒子;、
    (c)前記コア層と前記シェル層との合計100重量%に対して、50.1重量%以上、90.4重量%以下の前記コア層を含み、前記架橋シェル層の架橋度が0.45%超、0.50%以下であるコアシェル重合体粒子;及び
    (d)前記コア層と前記シェル層との合計100重量%に対して、40.1重量%以上、90.4重量%以下の前記コア層を含み、前記架橋シェル層の架橋度が0.50%超、5.00%以下であるコアシェル重合体粒子;
     からなる群より選択される1種以上である
     ことを特徴とする請求項16に記載の導体被覆材。
  18.  前記コアシェル重合体粒子は、少なくとも前記(a)を含む
     ことを特徴とする請求項17に記載の導体被覆材。
  19.  前記コアシェル重合体粒子は、少なくとも前記(b)を含む
     ことを特徴とする請求項17又は18に記載の導体被覆材。
  20.  前記コアシェル重合体粒子は、少なくとも前記(c)を含む
     ことを特徴とする請求項17乃至19のいずれかに記載の導体被覆材。
  21.  前記コアシェル重合体粒子は、少なくとも前記(d)を含む
     ことを特徴とする請求項17乃至20のいずれかに記載の導体被覆材。
  22.  前記架橋シェル層を構成する前記共重合体は、前記(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、前記多官能性単量体と、これらと共重合可能な不飽和単量体との共重合体である
     ことを特徴とする請求項17乃至21のいずれかに記載の導体被覆材。
  23.  59.1重量部以上、73.9重量部以下の前記熱可塑性ポリウレタン系樹脂と、26.1重量部以上、40.9重量部以下の前記コアシェル重合体粒子とからなる100重量部の前記樹脂成分と、
     42重量部以上、87重量部以下の前記リン酸エステル系難燃剤と、
     を含む
     ことを特徴とする請求項17乃至22のいずれかに記載の導体被覆材。
  24.  前記コアシェル重合体粒子は、1以上のコア層と1以上のシェル層とから構成され、前記コア層と前記シェル層との合計100重量%に対して、57.1重量%以上、82.0重量%以下の前記コア層を含む
     ことを特徴とする請求項16に記載の導体被覆材。
  25.  前記コアシェル重合体粒子の、JIS K 6253-3:2012に準拠した方法であって、試験機としてタイプAデュロメータを使用し、自動タイマ装置を使用せず、厚さ1.0mm以上、1.5mm以下のシート(30mm×40mm)を6枚積み重ねて得られる積層体を試験片として使用し、前記試験片を温度23℃、相対湿度50%で24時間以上状態調節した後、温度23℃及び相対湿度50%にて、加圧板を前記試験片に接触させてから10秒後の測定値を読み取る方法にて測定されるショアA硬度は、81以上、100以下である
     ことを特徴とする請求項24に記載の導体被覆材。
  26.  前記1以上のシェル層は、(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上を含み多官能性単量体を含まない原料の重合により得られる重合体であってガラス転移温度が40℃以上の重合体から構成される
     ことを特徴とする請求項24又は25に記載の導体被覆材。
  27.  58.6重量部以上、73.4重量部以下の前記熱可塑性ポリウレタン系樹脂と、26.6重量部以上、41.4重量部以下の前記コアシェル重合体粒子とからなる100重量部の前記樹脂成分と、
     41重量部以上、87重量部以下の前記リン酸エステル系難燃剤と、を含む
     ことを特徴とする請求項26に記載の導体被覆材。
  28.  前記1以上のシェル層を構成する前記重合体は、前記(メタ)アクリル酸エステル及びビニルシアン化合物からなる群より選択される1種以上と、これと共重合可能な不飽和単量体との共重合体である
     ことを特徴とする請求項26又は27に記載の導体被覆材。
  29.  58.1重量部以上、73.9重量部以下の熱可塑性ポリウレタン系樹脂と、26.1重量部以上、41.9重量部以下のコアシェル重合体粒子とからなる100重量部の樹脂成分と、
     42重量部以上、87重量部以下のリン酸エステル系難燃剤と、
     を含む樹脂原料を成形する
     ことを特徴とする導体被覆材の製造方法。
PCT/JP2015/060890 2014-04-07 2015-04-07 熱可塑性ポリウレタン系樹脂組成物、導体被覆材及びこれらの製造方法 WO2015156295A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016512747A JP6847659B2 (ja) 2014-04-07 2015-04-07 熱可塑性ポリウレタン系樹脂組成物、導体被覆材及びこれらの製造方法
CN201580018205.5A CN106255724B (zh) 2014-04-07 2015-04-07 热塑性聚氨酯系树脂组合物、导体被覆材料及它们的制造方法
EP15776540.5A EP3130641B1 (en) 2014-04-07 2015-04-07 Thermoplastic polyurethane resin composition, conductor covering material, and manufacturing method of these
US15/302,795 US10311995B2 (en) 2014-04-07 2015-04-07 Thermoplastic polyurethane resin composition, conductor covering material, and manufacturing method of these

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014079020 2014-04-07
JP2014079021 2014-04-07
JP2014-079021 2014-04-07
JP2014-079020 2014-04-07

Publications (1)

Publication Number Publication Date
WO2015156295A1 true WO2015156295A1 (ja) 2015-10-15

Family

ID=54287869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060890 WO2015156295A1 (ja) 2014-04-07 2015-04-07 熱可塑性ポリウレタン系樹脂組成物、導体被覆材及びこれらの製造方法

Country Status (5)

Country Link
US (1) US10311995B2 (ja)
EP (1) EP3130641B1 (ja)
JP (1) JP6847659B2 (ja)
CN (1) CN106255724B (ja)
WO (1) WO2015156295A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099196A1 (ja) * 2015-12-11 2017-06-15 株式会社カネカ 機械的強度に優れるポリマー微粒子含有ポリウレタン系硬化性組成物
WO2017145953A1 (ja) * 2016-02-22 2017-08-31 株式会社カネカ ポリオール組成物および熱硬化性樹脂

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04227956A (ja) * 1990-05-31 1992-08-18 Bayer Ag 熱可塑性軟質ポリウレタン組成物およびその製造方法
JPH06192566A (ja) * 1991-03-05 1994-07-12 Asahi Chem Ind Co Ltd 柔軟性の優れた樹脂組成物
JPH10310696A (ja) * 1997-04-11 1998-11-24 Hna Holdings Inc エラストマー組成物
JP2003166181A (ja) * 2001-09-13 2003-06-13 Okamoto Ind Inc 合成樹脂レザー
JP2003238796A (ja) * 2002-02-15 2003-08-27 Okamoto Ind Inc シート状成形材料
JP2009062494A (ja) * 2007-09-10 2009-03-26 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物及び成形品
JP2009516766A (ja) * 2005-11-21 2009-04-23 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング 改善された冷時衝撃強さを有する透明なtpu(熱可塑性ポリウレタン)/pmma(ポリメチル(メタ)アクリレート)混合物
WO2010047469A1 (en) * 2008-10-23 2010-04-29 Ls Cable Ltd. Thermoplastic polyurethane elastomer-based composition for insulation layers and electric cable equipped therewith
WO2014196607A1 (ja) * 2013-06-07 2014-12-11 株式会社カネカ 硬化性樹脂組成物、それを用いてなる構造接着剤、コーティング材又は繊維強化複合材料、それを発泡してなる発泡体、それを硬化してなる積層体、及びそれらの硬化物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2720025B1 (fr) * 1994-05-18 1996-08-02 Facom Dispositif d'accrochage d'un instrument sur une tête d'entraînement d'un organe fileté, et son application à un appareil dynamométrique.
MX9604747A (es) 1995-10-17 1997-04-30 Basf Corp Proceso para producir articulos de poliuretano termoplastico moldeados que exhiben resistencia mejorada a la luz ultravioleta y al calor.
US6863953B2 (en) * 2001-09-13 2005-03-08 Okamoto Industries, Inc. Surface material of urethane resin and a method for preparation thereof
JP4376005B2 (ja) 2003-06-25 2009-12-02 オカモト株式会社 難燃性合成樹脂レザー
KR100838451B1 (ko) 2005-12-30 2008-06-16 제일모직주식회사 내열도가 높고, 내충격성이 우수한 난연성 폴리카보네이트수지 조성물
WO2007102272A1 (ja) * 2006-03-06 2007-09-13 Mitsubishi Engineering-Plastics Corporation 熱可塑性樹脂組成物および樹脂成形体
CN102203186B (zh) * 2008-07-30 2014-06-18 陶氏环球技术有限责任公司 阻燃聚氨酯组合物
JP5344742B2 (ja) 2008-08-01 2013-11-20 株式会社Adeka 難燃性熱可塑性樹脂組成物
JP5636679B2 (ja) * 2010-01-21 2014-12-10 日立金属株式会社 ノンハロゲン難燃性ケーブル

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04227956A (ja) * 1990-05-31 1992-08-18 Bayer Ag 熱可塑性軟質ポリウレタン組成物およびその製造方法
JPH06192566A (ja) * 1991-03-05 1994-07-12 Asahi Chem Ind Co Ltd 柔軟性の優れた樹脂組成物
JPH10310696A (ja) * 1997-04-11 1998-11-24 Hna Holdings Inc エラストマー組成物
JP2003166181A (ja) * 2001-09-13 2003-06-13 Okamoto Ind Inc 合成樹脂レザー
JP2003238796A (ja) * 2002-02-15 2003-08-27 Okamoto Ind Inc シート状成形材料
JP2009516766A (ja) * 2005-11-21 2009-04-23 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング 改善された冷時衝撃強さを有する透明なtpu(熱可塑性ポリウレタン)/pmma(ポリメチル(メタ)アクリレート)混合物
JP2009062494A (ja) * 2007-09-10 2009-03-26 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物及び成形品
WO2010047469A1 (en) * 2008-10-23 2010-04-29 Ls Cable Ltd. Thermoplastic polyurethane elastomer-based composition for insulation layers and electric cable equipped therewith
WO2014196607A1 (ja) * 2013-06-07 2014-12-11 株式会社カネカ 硬化性樹脂組成物、それを用いてなる構造接着剤、コーティング材又は繊維強化複合材料、それを発泡してなる発泡体、それを硬化してなる積層体、及びそれらの硬化物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099196A1 (ja) * 2015-12-11 2017-06-15 株式会社カネカ 機械的強度に優れるポリマー微粒子含有ポリウレタン系硬化性組成物
CN108368335A (zh) * 2015-12-11 2018-08-03 株式会社钟化 机械强度优异的含有聚合物微粒的聚氨酯系固化性组合物
JPWO2017099196A1 (ja) * 2015-12-11 2018-11-01 株式会社カネカ 機械的強度に優れるポリマー微粒子含有ポリウレタン系硬化性組成物
CN108368335B (zh) * 2015-12-11 2021-09-28 株式会社钟化 机械强度优异的含有聚合物微粒的聚氨酯系固化性组合物
WO2017145953A1 (ja) * 2016-02-22 2017-08-31 株式会社カネカ ポリオール組成物および熱硬化性樹脂
JPWO2017145953A1 (ja) * 2016-02-22 2018-12-13 株式会社カネカ ポリオール組成物および熱硬化性樹脂

Also Published As

Publication number Publication date
US20170032866A1 (en) 2017-02-02
CN106255724A (zh) 2016-12-21
US10311995B2 (en) 2019-06-04
EP3130641A4 (en) 2017-12-06
JP6847659B2 (ja) 2021-03-24
JPWO2015156295A1 (ja) 2017-04-13
EP3130641A1 (en) 2017-02-15
CN106255724B (zh) 2019-01-01
EP3130641B1 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
KR101769178B1 (ko) 난연성 수지 조성물
JP4412407B2 (ja) 難燃性樹脂組成物並びにそれを用いた絶縁電線、絶縁シールド電線、絶縁ケーブル及び絶縁チューブ
US20120100371A1 (en) Flame-Retardant Resin Composition
TW201107415A (en) Thermoplastic/composition with epoxidized novolac
JP5624209B2 (ja) 高められた難燃性を有するスチレンブロック共重合体系組成物
TW201130916A (en) Thermoplastic polymer blends comprising crosslinked polar olefin polymers in a thermoplastic polyurethane matrix
KR101747592B1 (ko) 폴리오르가노실록산 함유 그래프트 공중합체, 열가소성 수지 조성물 및 성형체
WO2015187299A1 (en) Low softener halogen free flame retardant styrenic block copolymer-based thermoplastic elastomer compositions
CN106519144A (zh) 乙烯基系接枝共聚物和含有其的树脂组合物、及乙烯基系接枝共聚物的制备方法
WO2015156295A1 (ja) 熱可塑性ポリウレタン系樹脂組成物、導体被覆材及びこれらの製造方法
CN108623975A (zh) 电线包覆材料用组合物、绝缘电线和线束
KR20040106396A (ko) 폴리오르가노실록산 함유 그래프트 공중합체 조성물
KR20150079717A (ko) 가요성 및 강도를 가능하게 하는 중합체의 난연 시스템
CN103665779B (zh) 阻燃剂共聚醚酯组合物和包含其的物品
TW201016783A (en) Halogen-free flame retardant insulated wire
TW201137094A (en) Flame-retardant and flame-retardant resin composition
WO1999041315A1 (fr) Emulsions aqueuses contenant des particules de caoutchouc de silicone
TW201124461A (en) Thermoplastic polymer blends comprising dynamically crosslinked polyurethane in an olefin polymer matrix
TW201134925A (en) Migration-free, halogen-free, flame retardant thermoplastic polyurethane compositions
CN104903397A (zh) 耐热阻燃橡胶组合物、绝缘线和橡胶管
JP2005314550A (ja) 高柔軟性・耐熱性熱可塑性エラストマー組成物およびそれを用いた架橋絶縁電線
JP6299619B2 (ja) 絶縁電線
CA3174259A1 (en) Heat and oil resistant compositions
KR20010001126A (ko) 저발연성 및 저독성 난연 열가소성 수지 조성물
JP6428315B2 (ja) 絶縁電線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016512747

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15302795

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015776540

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015776540

Country of ref document: EP