Search Images Maps Play Gmail Drive Calendar Translate More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberWO2014196607 A1
Publication typeApplication
Application numberPCT/JP2014/064998
Publication date11 Dec 2014
Filing date5 Jun 2014
Priority date7 Jun 2013
Also published asCN105308085A, EP3006478A1, EP3006478A4, US20160122539
Publication numberPCT/2014/64998, PCT/JP/14/064998, PCT/JP/14/64998, PCT/JP/2014/064998, PCT/JP/2014/64998, PCT/JP14/064998, PCT/JP14/64998, PCT/JP14064998, PCT/JP1464998, PCT/JP2014/064998, PCT/JP2014/64998, PCT/JP2014064998, PCT/JP201464998, WO 2014/196607 A1, WO 2014196607 A1, WO 2014196607A1, WO-A1-2014196607, WO2014/196607A1, WO2014196607 A1, WO2014196607A1
InventorsToshihiko Okamoto, 岡本 敏彦, Shohei NISHIMORI, 翔平 西森
ApplicantKaneka Corporation, 株式会社カネカ
Export CitationBiBTeX, EndNote, RefMan
External Links: Patentscope, Espacenet
硬化性樹脂組成物、それを用いてなる構造接着剤、コーティング材又は繊維強化複合材料、それを発泡してなる発泡体、それを硬化してなる積層体、及びそれらの硬化物
WO 2014196607 A1
Abstract
 本発明は、平均水酸基価が200~1500mgKOH/gであるポリオール(A)と、ポリイソシアネート(B)と、ポリマー微粒子(C)を含有することを特徴とする硬化性樹脂組成物、またはポリオール(A)と、ポリイソシアネート(B)と、ポリマー微粒子(C)を含有し、前記ポリオール(A)として、ポリエステルポリオール(a2)を必ず含有し、かつポリエステルポリオール(a2)の量が、ポリオール(A)成分の総量100質量部の内、20質量部以上であることを特徴とする硬化性樹脂組成物に関する。
Claims(37)
  1.  平均水酸基価が200~1500mgKOH/gであるポリオール(A)と、ポリイソシアネート(B)と、ポリマー微粒子(C)を含有することを特徴とする硬化性樹脂組成物。
  2.  前記ポリオール(A)として、ポリエーテルポリオール(a1)を含有することを特徴とする請求項1に記載の硬化性樹脂組成物。
  3.  前記ポリオール(A)の平均水酸基価が350~1500mgKOH/gであり、さらに硬化触媒(D)を含有することを特徴とする請求項1または2に記載の硬化性樹脂組成物。
  4.  前記ポリエーテルポリオール(a1)の量が、ポリオール(A)成分の総量100質量部の内、50質量部以上であることを特徴とする請求項2または3に記載の硬化性樹脂組成物。
  5.  ポリオール(A)と、ポリイソシアネート(B)と、ポリマー微粒子(C)を含有し、前記ポリオール(A)として、ポリエステルポリオール(a2)を必ず含有し、かつポリエステルポリオール(a2)の量が、ポリオール(A)成分の総量100質量部の内、20質量部以上であることを特徴とする硬化性樹脂組成物。
  6.  前記ポリオール(A)の平均水酸基価が20~1000mgKOH/gであることを特徴とする請求項5に記載の硬化性樹脂組成物。
  7.  さらに硬化触媒(D)を含有する請求項5または6に記載の硬化性樹脂組成物。
  8.  前記ポリイソシアネート(B)を、前記ポリオール(A)100質量部に対して、2~5000質量部含有し、
     前記ポリマー微粒子(C)を、前記ポリオール(A)と前記ポリイソシアネート(B)の総量100質量部に対して、1~100質量部含有することを特徴とする請求項1~7のいずれかに記載の硬化性樹脂組成物。
  9.  前記(C)成分の体積平均粒子径が、10~2000nmであることを特徴とする請求項1~8のいずれかに記載の硬化性樹脂組成物。
  10.  前記(C)成分が、コアシェル構造を有することを特徴とする請求項1~9のいずれかに記載の硬化性樹脂組成物。
  11.  前記(C)成分が、ジエン系ゴム、(メタ)アクリレート系ゴム、及びオルガノシロキサン系ゴムよりなる群から選択される1種以上のコア層を有することを特徴とする請求項1~10のいずれかに記載の硬化性樹脂組成物。
  12.  前記ジエン系ゴムが、ブタジエンゴム、およびブタジエン-スチレンゴムよりなる群から選択される1種以上であることを特徴とする請求項11に記載の硬化性樹脂組成物。
  13.  前記(C)成分が、芳香族ビニルモノマー、ビニルシアンモノマー、及び(メタ)アクリレートモノマーよりなる群から選択される1種以上のモノマー成分を、コア層にグラフト重合してなるシェル層を有することを特徴とする請求項1~12のいずれかに記載の硬化性樹脂組成物。
  14.  前記(C)成分が、水酸基を有するモノマー成分を、コア層にグラフト重合してなるシェル層を有することを特徴とする請求項1~13のいずれかに記載の硬化性樹脂組成物。
  15.  前記(C)成分が、該硬化性樹脂組成物中で1次粒子の状態で分散していることを特徴とする請求項1~14のいずれかに記載の硬化性樹脂組成物。
  16.  前記(A)成分が、3官能以上の多官能ポリオールを含有することを特徴とする請求項1~15のいずれかに記載の硬化性樹脂組成物。
  17.  前記(A)成分の総量100質量部の内、3官能以上の多官能ポリオールの含有量が20質量部以上であることを特徴とする請求項16に記載の硬化性樹脂組成物。
  18.  前記(B)成分が、環状構造または直鎖構造もしくは分岐鎖構造を有するポリイソシアネートであることを特徴とする請求項1~17のいずれかに記載の硬化性樹脂組成物。
  19.  前記(B)成分が、芳香族ポリイソシアネートであることを特徴とする請求項18に記載の硬化性樹脂組成物。
  20.  前記(B)成分が、イソシアネート基を1分子当り平均して2.1個以上有するポリイソシアネートであることを特徴とする請求項1~19のいずれかに記載の硬化性樹脂組成物。
  21.  前記(B)成分が、脂環族ポリイソシアネート、および脂肪族ポリイソシアネートよりなる群から選択される1種以上であることを特徴とする請求項18に記載の硬化性樹脂組成物。
  22.  前記(B)成分が、脂環族ポリイソシアネートである請求項21に記載の硬化性樹脂組成物。
  23.  前記(A)成分と前記(B)成分の総量100質量部に対して、硬化触媒(D)0.001~20質量部をさらに含有することを特徴とする請求項1~22のいずれかに記載の硬化性樹脂組成物。
  24.  前記(D)成分が有機スズ化合物であることを特徴とする請求項23に記載の硬化性樹脂組成物。
  25.  前記(A)成分と前記(B)成分の総量100質量部に対して、脱水剤(E)0.1~30質量部をさらに含有することを特徴とする請求項1~24のいずれかに記載の硬化性樹脂組成物。
  26.  前記(B)成分のイソシアネート基の総モル量(β)と前記(A)成分の水酸基の総モル量(α)との比の値(β/α)が、0.7~1.5であることを特徴とする請求項1~25のいずれかに記載の硬化性樹脂組成物。
  27.  前記(A)成分と前記(B)成分との反応により得られるウレタンプレポリマーを含有することを特徴とする請求項1~26のいずれかに記載の硬化性樹脂組成物。
  28.  前記(B)成分のイソシアネート(NCO)基と前記(A)成分の活性水素含有基との当量比(NCO/活性水素含有基)が、1.05~5.0の範囲で反応して得たイソシアネートを有するウレタンプレポリマーを含有することを特徴とする請求項27に記載の硬化性樹脂組成物。
  29.  請求項28に記載の硬化性樹脂組成物からなる1液型湿分硬化性樹脂組成物。
  30.  請求項1~28のいずれかに記載の硬化性樹脂組成物であって、前記(B)成分を含有する第1液と、前記(A)成分と前記(C)成分と前記(D)成分を含有する第2液とからなる2液型硬化性樹脂組成物。
  31.  請求項1~30のいずれかに記載の硬化性樹脂組成物を硬化して得られる硬化物。
  32.  請求項1~30のいずれかに記載の硬化性樹脂組成物を用いてなる構造接着剤。
  33.  請求項1~30のいずれかに記載の硬化性樹脂組成物を用いてなるコーティング材。
  34.  請求項1~30のいずれかに記載の硬化性樹脂組成物を、金属または多孔質下地に塗布した後、該硬化性樹脂組成物を硬化してなる積層体。
  35.  請求項1~30のいずれかに記載の硬化性樹脂組成物を、強化繊維のバインダーとして用いてなる繊維強化複合材料。
  36.  請求項1~30のいずれかに記載の硬化性樹脂組成物を発泡してなる発泡体。
  37.  ガラス転移温度が75℃以上である請求項31に記載の硬化物。
Description
硬化性樹脂組成物、それを用いてなる構造接着剤、コーティング材又は繊維強化複合材料、それを発泡してなる発泡体、それを硬化してなる積層体、及びそれらの硬化物

 本発明は、剛性を低下させること無く、接着性および靭性に優れた、ポリウレタンを主成分とする硬化性樹脂組成物に関し、特に前記硬化性樹脂組成物を用いてなる構造接着剤、コーティング剤又は繊維強化複合材料、前記硬化性樹脂組成物を発泡してなる発泡体、前記硬化性樹脂組成物を硬化してなる積層体、及びそれらの硬化物に関するものである。

 ポリウレタンを主成分とする接着剤は、プラスチックや木材、金属などの多岐にわたる被着体に良好な接着性を示し、原料である種々のイソシアネート基含有化合物と種々の活性水素基含有化合物との組み合わせにより、硬質から軟質までの幅広い機械物性が得られる為、多くの用途で使用されている。

 一方、自動車およびその他の車両や航空機などの組立に使用される構造接着剤は、接着性は勿論、ボディのねじり剛性を高める高剛性である事が必要となる。更に構造接着剤は、衝突の際に受ける接着破壊を低く抑えるための指標である破壊靭性に優れることが求められる。

 特許文献1には、車両の構造接着に適するウレタン樹脂接着剤が開示されている。しかしながら、ポリウレタンを主成分とする接着剤は、高剛性と接着性との両立が困難であった。

 また、床材や舗装材等の被覆構造体においても、エポキシ系被覆材の欠点である脆さを改善しつつ、高硬質なコーティング剤が望まれている。

 更に、強化繊維で補強されたウレタン系複合材料においても、更なる高弾性率化が求められており、高弾性率と靱性との両立が重要となっている。

 しかしながら、ポリウレタンを主成分とする硬化性樹脂組成物は、高剛性(例えば高弾性率)と接着性や靱性との両立が困難であった。

特開2012-251053号公報

 本発明は上述の事情に鑑みてなされたものであり、本発明の目的は、得られる硬化物の剛性を低下させること無く、接着性および靭性に優れた硬化性樹脂組成物を提供することにある。
 また、本発明の目的は、前記硬化性樹脂組成物を用いた技術を提供することにもある。

 本発明者は、このような問題を解決するために鋭意検討した結果、特定のポリオール(A)とポリイソシアネート(B)を必須構成成分として用いたポリウレタン系硬化性樹脂組成物において、ポリマー微粒子(C)を含有することにより前記課題を解決することを見出し、本発明を完成させた。

 すなわち、本願発明の要旨は、以下の通りである。
[1] 平均水酸基価が200~1500mgKOH/gであるポリオール(A)と、ポリイソシアネート(B)と、ポリマー微粒子(C)を含有することを特徴とする硬化性樹脂組成物。
[2] 前記ポリオール(A)として、ポリエーテルポリオール(a1)を含有することを特徴とする[1]に記載の硬化性樹脂組成物。
[3] 前記ポリオール(A)の平均水酸基価が350~1500mgKOH/gであり、さらに硬化触媒(D)を含有することを特徴とする[1]または[2]に記載の硬化性樹脂組成物。
[4] 前記ポリエーテルポリオール(a1)の量が、ポリオール(A)成分の総量100質量部の内、50質量部以上であることを特徴とする[2]または[3]に記載の硬化性樹脂組成物。
[5] ポリオール(A)と、ポリイソシアネート(B)と、ポリマー微粒子(C)を含有し、前記ポリオール(A)として、ポリエステルポリオール(a2)を必ず含有し、かつポリエステルポリオール(a2)の量が、ポリオール(A)成分の総量100質量部の内、20質量部以上であることを特徴とする硬化性樹脂組成物。
[6] 前記ポリオール(A)の平均水酸基価が20~1000mgKOH/gであることを特徴とする[5]に記載の硬化性樹脂組成物。
[7] さらに硬化触媒(D)を含有する[5]または[6]に記載の硬化性樹脂組成物。
[8] 前記ポリイソシアネート(B)を、前記ポリオール(A)100質量部に対して、2~5000質量部含有し、
 前記ポリマー微粒子(C)を、前記ポリオール(A)と前記ポリイソシアネート(B)の総量100質量部に対して、1~100質量部含有することを特徴とする[1]~[7]のいずれかに記載の硬化性樹脂組成物。
[9] 前記(C)成分の体積平均粒子径が、10~2000nmであることを特徴とする[1]~[8]のいずれかに記載の硬化性樹脂組成物。
[10] 前記(C)成分が、コアシェル構造を有することを特徴とする[1]~[9]のいずれかに記載の硬化性樹脂組成物。
[11] 前記(C)成分が、ジエン系ゴム、(メタ)アクリレート系ゴム、及びオルガノシロキサン系ゴムよりなる群から選択される1種以上のコア層を有することを特徴とする[1]~[10]のいずれかに記載の硬化性樹脂組成物。
[12] 前記ジエン系ゴムが、ブタジエンゴム、およびブタジエン-スチレンゴムよりなる群から選択される1種以上であることを特徴とする[11]に記載の硬化性樹脂組成物。
[13] 前記(C)成分が、芳香族ビニルモノマー、ビニルシアンモノマー、及び(メタ)アクリレートモノマーよりなる群から選択される1種以上のモノマー成分を、コア層にグラフト重合してなるシェル層を有することを特徴とする[1]~[12]のいずれかに記載の硬化性樹脂組成物。
[14] 前記(C)成分が、水酸基を有するモノマー成分を、コア層にグラフト重合してなるシェル層を有することを特徴とする[1]~[13]のいずれかに記載の硬化性樹脂組成物。
[15] 前記(C)成分が、該硬化性樹脂組成物中で1次粒子の状態で分散していることを特徴とする[1]~[14]のいずれかに記載の硬化性樹脂組成物。
[16] 前記(A)成分が、3官能以上の多官能ポリオールを含有することを特徴とする[1]~[15]のいずれかに記載の硬化性樹脂組成物。
[17] 前記(A)成分の総量100質量部の内、3官能以上の多官能ポリオールの含有量が20質量部以上であることを特徴とする[16]に記載の硬化性樹脂組成物。
[18] 前記(B)成分が、環状構造または直鎖構造もしくは分岐鎖構造を有するポリイソシアネートであることを特徴とする[1]~[17]のいずれかに記載の硬化性樹脂組成物。
[19] 前記(B)成分が、芳香族ポリイソシアネートであることを特徴とする[18]に記載の硬化性樹脂組成物。
[20] 前記(B)成分が、イソシアネート基を1分子当り平均して2.1個以上有するポリイソシアネートであることを特徴とする[1]~[19]のいずれかに記載の硬化性樹脂組成物。
[21] 前記(B)成分が、脂環族ポリイソシアネート、および脂肪族ポリイソシアネートよりなる群から選択される1種以上であることを特徴とする[18]に記載の硬化性樹脂組成物。
[22] 前記(B)成分が、脂環族ポリイソシアネートである[21]に記載の硬化性樹脂組成物。
[23] 前記(A)成分と前記(B)成分の総量100質量部に対して、硬化触媒(D)0.001~20質量部をさらに含有することを特徴とする[1]~[22]のいずれかに記載の硬化性樹脂組成物。
[24] 前記(D)成分が有機スズ化合物であることを特徴とする[23]に記載の硬化性樹脂組成物。
[25] 前記(A)成分と前記(B)成分の総量100質量部に対して、脱水剤(E)0.1~30質量部をさらに含有することを特徴とする[1]~[24]のいずれかに記載の硬化性樹脂組成物。
[26] 前記(B)成分のイソシアネート基の総モル量(β)と前記(A)成分の水酸基の総モル量(α)との比の値(β/α)が、0.7~1.5であることを特徴とする[1]~[25]のいずれかに記載の硬化性樹脂組成物。
[27] 前記(A)成分と前記(B)成分との反応により得られるウレタンプレポリマーを含有することを特徴とする[1]~[26]のいずれかに記載の硬化性樹脂組成物。
[28] 前記(B)成分のイソシアネート(NCO)基と前記(A)成分の活性水素含有基との当量比(NCO/活性水素含有基)が、1.05~5.0の範囲で反応して得たイソシアネートを有するウレタンプレポリマーを含有することを特徴とする[27]に記載の硬化性樹脂組成物。
[29] [28]に記載の硬化性樹脂組成物からなる1液型湿分硬化性樹脂組成物。
[30] [1]~[28]のいずれかに記載の硬化性樹脂組成物であって、前記(B)成分を含有する第1液と、前記(A)成分と前記(C)成分と前記(D)成分を含有する第2液とからなる2液型硬化性樹脂組成物。
[31] [1]~[30]のいずれかに記載の硬化性樹脂組成物を硬化して得られる硬化物。
[32] [1]~[30]のいずれかに記載の硬化性樹脂組成物を用いてなる構造接着剤。
[33] [1]~[30]のいずれかに記載の硬化性樹脂組成物を用いてなるコーティング材。
[34] [1]~[30]のいずれかに記載の硬化性樹脂組成物を、金属または多孔質下地に塗布した後、該硬化性樹脂組成物を硬化してなる積層体。
[35] [1]~[30]のいずれかに記載の硬化性樹脂組成物を、強化繊維のバインダーとして用いてなる繊維強化複合材料。
[36] [1]~[30]のいずれかに記載の硬化性樹脂組成物を発泡してなる発泡体。
[37] ガラス転移温度が75℃以上である[31]に記載の硬化物。

 本発明の硬化性樹脂組成物は、得られる硬化物が高剛性(高弾性率)を示しながら、優れた靱性と接着性を示す。

 以下、本発明の硬化性樹脂組成物について詳述する。

 本発明の硬化性樹脂組成物は、ポリオール(A)と、ポリイソシアネート(B)と、ポリマー微粒子(C)を含有することを特徴としており、好ましくは第一の態様及び第二の態様のいずれかに分けられる。
 第一の態様は、平均水酸基価が200~1500mgKOH/gであるポリオール(A)と、ポリイソシアネート(B)と、ポリマー微粒子(C)を含有することを特徴とする硬化性樹脂組成物(I)である。
 第二の態様は、ポリオール(A)と、ポリイソシアネート(B)と、ポリマー微粒子(C)を含有し、前記ポリオール(A)として、ポリエステルポリオールを必ず含有し、ポリエステルポリオール(a2)の量が、ポリオール(A)成分の総量100質量部の内、20質量部以上であることを特徴とする硬化性樹脂組成物(II)である。
 前記第一の態様及び第二の態様のいずれでも、さらに硬化触媒(D)を含有していてもよい。
 第一の態様は、特に従来よりも高い剛性(弾性率)及び靭性を示す点で有利であり、第二の態様は、特に従来と比較して同等以上の接着性を示す点で有利である。

 本発明の硬化性樹脂組成物は、ポリオール(A)とポリイソシアネート(B)を反応させて得られる所謂ポリウレタンを主成分として含有し、(A)成分と(B)成分の総量は、該硬化性樹脂組成物の全量の20質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上が更に好ましく、50質量%以上が特に好ましい。(A)成分と(B)成分の総量は、例えば99.5質量%以下、99.0質量%以下、98.5質量%以下であってもよい。20質量%未満では、得られる硬化物の靱性と接着性が低下する場合がある。また、該硬化性樹脂組成物から無機充填材やガラス繊維・炭素繊維等の無機成分を除いた全質量(例えば、(A)~(E)成分の全質量)に対して、(A)成分と(B)成分の総量は、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上が更に好ましく、80質量%以上が特に好ましい。該硬化性樹脂組成物から無機充填材やガラス繊維・炭素繊維等の無機成分を除いた全質量に対して、(A)成分と(B)成分の総量は、例えば99.9質量%以下、99.5質量%以下、99.0質量%以下であってもよい。50質量%未満では、得られる硬化物の靱性と接着性が低下する場合がある。

<ポリオール(A)>
 本発明の硬化性樹脂組成物では、ポリオール(A)を使用する。ポリオール(A)は単独で用いても良く2種以上併用しても良い。

 (A)成分は、末端に活性水素を2個以上有する化合物であり、分子量50~20,000程度の2官能以上のポリオールであり、脂肪族アルコール類、芳香族アルコール類、ポリエーテルポリオール類、ポリエステルポリオール類、ポリオレフィンポリオール類、アクリルポリオール類等を挙げることができる。

 本発明の第一の態様である硬化性樹脂組成物(I)では、ポリオール(A)成分の平均水酸基価が200~1500mgKOH/gであることが必須である。また、前記ポリオール(A)として、ポリエーテルポリオール(a1)を含有することが好ましい。ポリエーテルポリオールは、粘度が低く作業性に優れ、得られる硬化物の硬度と靱性のバランスに優れる。特定の平均水酸基価を有する(A)成分と、後述の(B)成分と(C)成分とを組み合わせることにより、高弾性率で高靭性、高伸びの硬化物が得られる。平均水酸基価は、300mgKOH/g以上が好ましく、より好ましくは350mgKOH/g以上、さらに好ましくは400mgKOH/g以上、さらにより好ましくは440mgKOH/g以上、特に好ましくは450mgKOH/g以上であり、好ましくは1200mgKOH/g以下、より好ましくは1100mgKOH/g以下、さらに好ましくは1000mgKOH/g以下、特に好ましくは800mgKOH/g以下である。平均水酸基価が200mgKOH/g未満では、(C)成分による靭性や伸びの改善効果が小さい場合があり、1500mgKOH/gより大きいと、得られる硬化物の靭性が低い場合がある。

 なお、水酸基価は、JIS K 1557-1の規格に基づいた測定方法により得られる。

 硬化性樹脂組成物(I)において、前記ポリエーテルポリオール(a1)の量は、ポリオール(A)成分の総量100質量部の内、50質量部以上が好ましく、70質量部以上がより好ましく、80質量部以上が更に好ましく、90質量部以上が特に好ましい。前記ポリエーテルポリオール(a1)の量の上限は、例えば100質量部である。(A)成分中のポリエーテルポリオール(a1)の含有量が50質量部未満では、靭性改良効果が小さい場合がある。

 ポリエーテルポリオール(a1)の具体例としては、例えば、以下の1種又は2種以上の活性水素を含有する開始剤の存在下、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド等を開環重合して得られるランダム又はブロック共重合体等、及びこれらの混合物等が挙げられる。前記の活性水素を含有する開始剤としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ビスフェノールA等のジオール類;トリメチロールエタン、トリメチロールプロパン、グリセリン等のトリオール類;単糖、オリゴ糖、多糖等の糖類;ソルビトール;アンモニア、エチレンジアミン、尿素、モノメチルジエタノールアミン、モノエチルジエタノールアミン等のアミン類等が挙げられる。

 本発明の第二の態様である硬化性樹脂組成物(II)では、前記ポリオール(A)成分として、ポリエステルポリオール(a2)を必ず含有し、かつポリエステルポリオール(a2)の量は、(A)成分の総量100質量部の内、20質量部以上であることが必須である。上記(a2)の量は、(A)成分の総量100質量部の内、25質量部以上がより好ましく、30質量部以上がさらに好ましく、33質量部以上が特に好ましい。上記(a2)の量は、例えば100質量部以下であり、好ましくは90質量部以下、より好ましくは80質量部以下、さらに好ましくは70質量部以下である。(A)成分中のポリエステルポリオール(a2)の含有量が20質量部未満では、得られる硬化物の弾性率が小さい場合がある。ポリエステルポリオールは、接着性に優れ、得られる硬化物の硬度と靱性のバランスに優れる。前記(a2)成分を20質量部以上含有する(A)成分と、後述の(B)成分と(C)成分とを組み合わせることにより、接着性に優れ、高弾性率で高靭性、高伸びの硬化物が得られる。

 前記硬化性樹脂組成物(II)において、ポリエステルポリオール(a2)以外の成分は、前記ポリエーテルポリオールであってもよい。前記ポリエーテルポリオールの量は、(A)成分の総量100質量部の内、例えば10質量部以上、好ましくは15質量部以上、より好ましくは17質量部以上であり、例えば80質量部以下、好ましくは70質量部以下、より好ましくは67質量部以下である。

 硬化性樹脂組成物(II)における(A)成分の平均水酸基価は、20~1000mgKOH/gが好ましい。当該平均水酸基価は、より好ましくは50mgKOH/g以上、さらに好ましくは100mgKOH/g以上、さらにより好ましくは130mgKOH/g以上であり、より好ましくは500mgKOH/g以下、さらに好ましくは300mgKOH/g以下、さらにより好ましくは200mgKOH/g以下である。平均水酸基価が20mgKOH/g未満では、得られる硬化物の弾性率が低かったり、(C)成分による靭性や伸びの改善効果が小さい場合があり、1000mgKOH/gより大きいと、得られる硬化物の靭性が低い場合がある。

 ポリエステルポリオール及びポリエーテルポリオールの官能基は、好ましくは2官能以上の基である。

 なお、水酸基価は、JIS K 1557-1の規格に基づいた測定方法により得られる。

 ポリエステルポリオール(a2)の具体例としては、例えばマレイン酸、フマル酸、アジピン酸、セバシン酸、フタル酸、ドデカン二酸、イソフタル酸、アゼライン酸等の多塩基酸およびその酸無水物と、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-へキサンジオール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール等の多価アルコールとを、エステル化触媒の存在下、150~270℃の温度範囲で重縮合させて得られる重合体が挙げられる。更に、ε-カプロラクトン、バレロラクトン等の開環重合物やポリカーボネートジオールやヒマシ油等の活性水素を2個以上有する活性水素化合物等が挙げられる。

 上記多価アルコールは、糖類、脂肪族アルコール、芳香族アルコール、ポリオレフィン型ポリオール、アクリルポリオール等から選択される1種または2種以上を組み合わせて使用することができる。

 糖類は、単糖、オリゴ糖、多糖等の糖類が挙げられる。

 脂肪族アルコールは、二価アルコール、三価以上のアルコール(三価アルコール、四価アルコール等)のいずれであってもよく、二価アルコールとしては、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール等のアルキレングリコール類(特に炭素数が1~6程度のアルキレングリコール類)、このアルキレングリコール類の2分子以上(例えば、2~6分子程度)の脱水縮合物(ジエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等)等が挙げられる。三価アルコールとしては、グリセリン、トリメチロールプロパン、トリメチロールエタン、1,2,6-ヘキサントリオール等(特に炭素数が3~10程度の三価アルコール)が挙げられる。四価アルコールとしては、ペンタエリスリトール、ジグリセリン等が挙げられる。

 芳香族アルコールとしては、ビスフェノールA、ビスフェノールF等のビスフェノール類;ジヒドロキシビフェニル等のビフェニル類;ハイドロキノン、フェノールホルムアルデヒド縮合物等の多価フェノール類;ナフタレンジオール等が挙げられる。

 ポリオレフィン型ポリオールとしては、ポリブタジエンポリオール、ポリイソプレンポリオールやその水添物等が挙げられる。

 アクリルポリオールとしては、例えば、ヒドロキシエチル(メタ)アクリレートやヒドロキシブチル(メタ)アクリレートやビニルフェノール等の水酸基を有するモノマーと、n-ブチル(メタ)アクリレートや2-エチルヘキシル(メタ)アクリレート等の汎用モノマーとの共重合体、及びその混合物等が挙げられる。

 これらのポリオールの中でも水酸基を一分子中に3個以上有する3官能以上の多官能ポリオールは、硬化に際し反応性が高く、得られる硬化物が高硬度である点から好ましく、すなわち、前記(A)成分は、3官能以上の多官能ポリオールを含有することが好ましい。
 前記の3官能以上の多官能ポリオールの含有量は、前記(A)成分の全量(総量100質量部)の内、20質量部以上が好ましく、30質量部以上がより好ましく、50質量部以上が更に好ましく、70質量部以上が特に好ましい。前記の3官能以上の多官能ポリオールの含有量は、例えば100質量部以下であり、好ましくは90質量部以下、より好ましくは80質量部以下である。20質量部未満では、得られる硬化物の剛性が不十分な場合がある。

 本発明の(A)成分の数平均分子量は、GPCにおけるポリスチレン換算において、60~900であることが好ましく、90~450がより好ましく、120~350が更に好ましく、150~250が特に好ましい。60未満では、得られる硬化物の靱性と接着性が低下する場合がある。900より大きいと、得られる硬化物の剛性が低下する場合がある。

 本発明の硬化性樹脂組成物中の構成成分としての(A)成分の含有量は、該硬化性樹脂組成物の全量の10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上が更に好ましく、25質量%以上が特に好ましい。上記含有量は、該硬化性樹脂組成物の全量の90質量%以下であることが好ましく、より好ましくは85質量%以下、更に好ましくは80質量%以下、特に好ましくは75質量%以下である。10質量%未満または90質量%超では、得られる硬化物の靱性と接着性が低下する場合がある。
 また、該硬化性樹脂組成物から無機成分を除いた全質量に対して、(A)成分の含有量は、25質量%以上が好ましく、30質量%以上がより好ましく、35質量%以上が更に好ましく、40質量%以上が特に好ましい。上記(A)成分の含有量は、該硬化性樹脂組成物から無機成分を除いた全質量に対して、75質量%以下が好ましく、より好ましくは70質量%以下、更に好ましくは65質量%以下、特に好ましくは60質量%以下である。25質量%未満または75質量%超では、得られる硬化物の靱性と接着性が低下する場合がある。

<ポリイソシアネート(B)>
 本発明の硬化性樹脂組成物では、ポリイソシアネート(B)を使用する。ポリイソシアネート(B)は単独で用いても良く2種以上併用しても良い。ポリイソシアネート(B)は、本発明の(A)成分と反応し、硬化性樹脂組成物中のポリウレタンを形成する必須構成成分である。

 本発明の硬化性樹脂組成物では、(B)成分の含有量は、(A)成分100質量部に対して、2~5000質量部である事が好適である。(B)成分の含有量は、(A)成分100質量部に対して、5質量部以上がより好ましく、さらに好ましくは10質量部以上、さらにより好ましくは30質量部以上、特に好ましくは33質量部以上、最も好ましくは50質量部以上であり、2000質量部以下がより好ましく、さらに好ましくは1000質量部以下、さらにより好ましくは500質量部以下、特に好ましくは300質量部以下、最も好ましくは200質量部以下である。2質量部未満では、得られる硬化物の弾性率が低い場合があり、5000質量部より多いと、得られる硬化物の靭性が低い場合がある。

 前記(B)成分のイソシアネート基の総モル量(β)と前記(A)成分の水酸基の総モル量(α)との比の値(β/α)が、0.7~1.5であることが好ましい。当該比は、より好ましくは0.8以上、さらに好ましくは0.9以上であり、より好ましくは1.4以下、さらに好ましくは1.3以下である。β/αの値がこの範囲から外れると、得られる硬化物の物性が低下する場合がある。

 前記(B)成分のイソシアネート基の数は、1分子当り2個以上であるが、前記(B)成分がイソシアネート基を1分子当り平均して2.1個以上有するポリイソシアネート化合物であることは、後述の(C)成分との組み合わせにより、得られる硬化物の物性(接着性、靭性、耐衝撃性)改良効果が顕著である為、好ましい。イソシアネート基の数は、1分子当り平均して2.3個以上であることがより好ましく、さらに好ましくは2.5個以上であり、20個以下であることがより好ましく、さらに好ましくは10個以下である。

 ポリイソシアネート(B)としては、従来公知のポリイソシアネート化合物が用いられる。従来公知のポリイソシアネート化合物としては、例えば、脂肪族ポリイソシアネート化合物、脂環族ポリイソシアネート化合物、芳香脂肪族ポリイソシアネート化合物、芳香族ポリイソシアネート化合物等を用いることができる。以下、それらの具体例を挙げる。

 脂肪族ポリイソシアネート化合物としては、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、1,2-プロピレンジイソシアネート、1,2-ブチレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート、2,4,4-又は2,2,4-トリメチルヘキサメチレンジイソシアネート、2,6-ジイソシアネートメチルカプロエート等のジイソシアネート化合物;リジンエステルトリイソシアネート、1,4,8-トリイソシアネートオクタン、1,6,11-トリイソシアネートウンデカン、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、1,3,6-トリイソシアネートヘキサン、2,5,7-トリメチル-1,8-ジイソシアネート-5-イソシアネートメチルオクタン等の3つ以上のイソシアネート基を有する化合物;等が挙げられる。

 脂環族ポリイソシアネート化合物としては、1,3-シクロペンテンジイソシアネート、1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート、4,4′-メチレンビス(シクロヘキシルイソシアネート)、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、1,4-ビス(イソシアネートメチル)シクロヘキサン、イソホロンジイソシアネート等のジイソシアネート化合物;1,3,5-トリイソシアネートシクロヘキサン、1,3,5-トリメチルイソシアネートシクロヘキサン、3-イソシアネートメチル-3,3,5-トリメチルシクロヘキシルイソシアネート、2-(3-イソシアネートプロピル)-2,5-ジ(イソシアネートメチル)-ビシクロ[2,2,1]ヘプタン、2-(3-イソシアネートプロピル)-2,6-ジ(イソシアネートメチル)-ビシクロ[2,2,1]ヘプタン、3-(3-イソシアネートプロピル)-2,5-ジ(イソシアネートメチル)-ビシクロ[2,2,1]ヘプタン、5-(2-イソシアネートエチル)-2-イソシアネートメチル-3-(3-イソシアネートプロピル)-ビシクロ[2,2,1]ヘプタン、6-(2-イソシアネートエチル)-2-イソシアネートメチル-3-(3-イソシアネートプロピル)-ビシクロ[2,2,1]ヘプタン、5-(2-イソシアネートエチル)-2-イソシアネートメチル-2-(3-イソシアネートプロピル)-ビシクロ[2,2,1]ヘプタン、6-(2-イソシアネートエチル)-2-イソシアネートメチル-2-(3-イソシアネートプロピル)-ビシクロ[2,2,1]ヘプタン等の3つ以上のイソシアネート基を有する化合物;等が挙げられる。

 芳香脂肪族ポリイソシアネート化合物としては、1,3-若しくは1,4-キシリレンジイソシアネート又はそれらの混合物、ω,ω′-ジイソシアネート-1,4-ジエチルベンゼン、1,3-若しくは1,4-ビス(1-イソシアネート-1-メチルエチル)ベンゼン又はそれらの混合物等のジイソシアネート化合物;1,3,5-トリイソシアネートメチルベンゼン等の3つ以上のイソシアネート基を有する化合物;等が挙げられる。

 芳香族ポリイソシアネート化合物としては、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、4,4′-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネート、2,4-又は2,6-トリレンジイソシアネート、4,4′-トルイジンジイソシアネート、4,4′-ジフェニルエーテルジイソシアネート等のジイソシアネート化合物;トリフェニルメタン-4,4′,4″-トリイソシアネート、1,3,5-トリイソシアネートベンゼン、2,4,6-トリイソシアネートトルエン、4,4′-ジフェニルメタン-2,2′,5,5′-テトライソシアネート、ポリメチレンポリフェニルポリイソシアネート(ポリメリックMDI)等の3つ以上のイソシアネート基を有する化合物;等が挙げられる。

 更に、ポリイソシアネート化合物として、前記の各種のポリイソシアネート化合物を用いて得た、アロファネート変性体、ビウレット変性体、イソシアヌレート変性体等を挙げることができる。

 前記(B)成分は、環状構造または直鎖構造もしくは分岐鎖構造を有するポリイソシアネートであることが好ましく、前記(B)成分は、芳香族ポリイソシアネートであることがより好ましく、脂環族ポリイソシアネート、および脂肪族ポリイソシアネートよりなる群から選択される1種以上であることがより好ましい。脂環族ポリイソシアネート化合物、芳香脂肪族ポリイソシアネート化合物、芳香族ポリイソシアネート化合物等の、分子内に環状構造を有するポリイソシアネートは、前述の(A)成分と、後述の(C)成分との組み合わせにより、得られる硬化物の物性(接着性、靭性、耐衝撃性)改良効果が顕著である為、より好ましい。これらの中でも、芳香族ポリイソシアネートは更に好ましく、4,4′-ジフェニルメタンジイソシアネート、2,4-又は2,6-トリレンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート(ポリメリックMDI)は特に好ましい。

 これらの中でも、芳香族ポリイソシアネート化合物や芳香脂肪族ポリイソシアネート化合物は、硬化性樹脂組成物の接着性に優れることから好ましい。特に、4,4′-ジフェニルメタンジイソシアネート、2,4-又は2,6-トリレンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート(ポリメリックMDI)が好ましい。

 脂肪族ポリイソシアネート化合物、脂環族ポリイソシアネート化合物は、得られる硬化物の耐候性に優れることから好ましい。特に、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、および、これらのイソシアヌレート変性体が好ましい。

 これらポリイソシアネート化合物の使用に際し、黄変性が問題になる場合には、脂肪族、脂環族、または芳香脂肪族のポリイソシアネートを使用するのが好ましく、脂肪族ポリイソシアネートまたは脂環族ポリイソシアネートがより好ましい。特に、(B)成分として脂肪族ポリイソシアネートを使用し、ウレタン硬化触媒成分として後述の(D)成分の中の有機スズ化合物を使用した場合には、黄変性が無く耐候性に優れ、硬化性にも優れる為に、特に好ましい。

 本発明の(B)成分は、イソシアネート基をブロック剤でマスクし、常温で不活性化したブロックイソシアネートとすることも可能である。ブロック剤でマスクしたブロックイソシアネートは、加熱(例えば、130-160℃)や湿気によりブロック剤が解離し、イソシアネート基が再生する。従って、ブロックイソシアネートは、(A)成分と組み合わせて、加熱または湿気硬化型の1液型硬化性樹脂組成物として使用できる。

 前記ブロック剤としては、例えば、アルコール類、フェノール類、オキシム類、トリアゾール類、カプロラクタム類等が挙げられる。

 アルコール類の好ましい例としては、メタノール、エタノール、プロパノール、ヘキサノール、ラウリルアルコール、t-ブタノール、シクロヘキサノール等を挙げることができる。フェノール類の好ましい例としては、キシレノール、ナフトール、4-メチル-2,6-ジ-t-ブチルフェノール等を挙げることができる。オキシム類の好ましい例としては、2,6-ジメチル-4-ヘプタノンオキシム、メチルエチルケトオキシム、2-ヘプタノンオキシム等が挙げられる。トリアゾール類の好ましい例としては、1,2,4-トリアゾール等が挙げられる。カプロラクタム類の好ましい例としては、ε-カプロラクタム等が挙げられる。その他、3,5-ジメチルピラゾール等を好適に用いることができる。これらのなかでも、メタノール、キシレノール、メチルエチルケトオキシムが好ましい。

 本発明の硬化性樹脂組成物中の構成成分としての(B)成分の含有量は、該硬化性樹脂組成物の全量の10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上が更に好ましく、25質量%以上が特に好ましい。上記含有量は、該硬化性樹脂組成物の全量の85質量%以下が好ましく、より好ましくは80質量%以下、さらに好ましくは75質量%以下、特に好ましくは70質量%以下である。10質量%未満または85質量%超では、得られる硬化物の靱性と接着性が低下する場合がある。
 また、該硬化性樹脂組成物から無機充填材やガラス繊維・炭素繊維等の無機成分を除いた全質量(例えば、(A)~(E)成分の全質量)に対して、(B)成分の含有量は、25質量%以上が好ましく、30質量%以上がより好ましく、35質量%以上が更に好ましく、40質量%以上が特に好ましい。上記(B)成分の含有量は、該硬化性樹脂組成物の全量の70質量%以下が好ましく、より好ましくは65質量%以下、更に好ましくは60質量%以下、特に好ましくは55質量%以下である。25質量%未満または70質量%超では、得られる硬化物の靱性と接着性が低下する場合がある。

<(A)成分と(B)成分の事前反応によるプレポリマー>
 本発明では、硬化性樹脂組成物の硬化時に初めて(A)成分と(B)成分を反応させることも可能であるが、(A)成分と(B)成分の一部または全部を事前に反応させた所謂プレポリマーとして、硬化性樹脂組成物に使用することも可能である。さらには、(C)成分を(A)成分に分散させてから、(B)成分と反応させてプレポリマー化してもよい。この様に、前記硬化性樹脂組成物は、前記(A)成分と前記(B)成分との反応により得られるウレタンプレポリマーを含有してもよい。プレポリマー化により、ウレタン化反応の反応性制御、2液型硬化性樹脂組成物の場合の混合比制御、硬化性樹脂組成物の粘度調節、硬化時の発泡抑制などの効果がある。

 ウレタンプレポリマーの合成方法は従来公知の方法で良い。例えば、撹拌機、コンデンサー、減圧脱水装置、窒素気流装置を備えた密閉式反応釜に、ポリオール類等の末端に活性水素を2個以上有する化合物を仕込み減圧脱水後、イソシアネート化合物を配合して窒素気流下で70~100℃にて3~8時間反応させて、ウレタンプレポリマーを得る。あるいは、イソシアネート化合物中に、乾燥させたポリオール類を滴下させて反応させることが、反応制御の点で好ましい。なお、プレポリマー化の参考方法として、1995年発行の、日本ゴム協会誌、68巻、ページ417に記載の方法などがある。

 前記(B)成分のイソシアネート(NCO)基と前記(A)成分の活性水素含有基との当量比(NCO/活性水素含有基)を、1よりも大きくすることで、イソシアネート基を有するウレタンプレポリマーが得られる。当量比が1.05~5.0の範囲で反応して得たイソシアネートを有するウレタンプレポリマーを含有することが好ましい。当量比は、1.5以上であることがより好ましく、さらに好ましくは2.0以上であり、4.0以下であることがより好ましく、さらに好ましくは3.0以下である。当量比が1.05未満では、プレポリマーの粘度が高く硬化性樹脂組成物の作業性確保が困難になる場合がある。また、5.0よりも大きいと、硬化途中の発泡が多くなる場合があり、得られる硬化物の強度が小さくなる場合がある。

 プレポリマー化により、硬化性樹脂組成物中の(A)成分のすべての活性水素含有基を消費した硬化性樹脂組成物は、プレポリマー中のイソシアネート基と大気中の湿分との反応で硬化し得る1液型湿分硬化性樹脂組成物として使用する事が可能である。すなわち、本発明には、前記硬化性樹脂組成物からなる1液型湿分硬化性樹脂組成物が含まれる。

 また、当量比を、1未満とすることで、水酸基を有するウレタンプレポリマーが得られてもよい。具体的には、当量比が0.2~0.95の範囲で反応して得たウレタンプレポリマーを含有することが好ましい。当該当量比は、0.25以上であることがより好ましく、さらに好ましくは0.30以上であり、0.7以下であることがより好ましく、さらに好ましくは0.5以下である。当量比が0.95より大きいと、プレポリマーの粘度が高く硬化性樹脂組成物の作業性確保が困難になる場合がある。また、0.2よりも小さいと、得られる硬化物の強度が小さくなる場合がある。

<ポリマー微粒子(C)>
 本発明の硬化性樹脂組成物は、前記(A)成分と前記(B)成分の総量100質量部に対して、ポリマー微粒子(C)1~100質量部を使用することが好ましい。(C)成分の添加により、得られる硬化物は靱性、耐クラック性、および、接着性に優れる。

 得られる硬化性樹脂組成物の取扱いやすさと、得られる硬化物の靭性及び接着性改良効果のバランスから、前記(A)成分と前記(B)成分の総量100質量部に対して、(C)成分は2質量部以上であることがより好ましく、さらに好ましくは3質量部以上、さらにより好ましくは4質量部以上であり、70質量部以下であることがより好ましく、さらに好ましくは50質量部以下、さらにより好ましくは20質量部以下である。

 ポリマー微粒子の粒子径は特に限定されないが、工業的生産性を考慮すると、体積平均粒子径(Mv)は10~2000nmが好ましく、30~600nmがより好ましく、50~400nmが更に好ましく、100~200nmが特に好ましい。なお、ポリマー粒子の体積平均粒子径(Mv)は、マイクロトラックUPA150(日機装株式会社製)を用いて測定することができる。

 (C)成分は、本発明の組成物中において、その粒子径の個数分布において、前記数平均粒子径の0.5倍以上、1倍以下の半値幅を有することが、得られる硬化性樹脂組成物が低粘度で取扱い易い為に好ましい。

 上述の特定の粒子径分布を容易に実現する観点から、(C)成分の粒子径の個数分布において、極大値が2個以上存在することが好ましく、製造時の手間やコストの観点から、極大値が2~3個存在することがより好ましく、極大値が2個存在することが更に好ましい。特に、体積平均粒子径が10nm以上150nm未満のポリマー微粒子10~90質量%と、体積平均粒子径が150nm以上2000nm以下のポリマー微粒子90~10質量%を含むことが好ましい。

 前記(C)成分は該硬化性樹脂組成物中で1次粒子の状態で分散していることが好ましい。本発明における、「ポリマー微粒子が硬化性樹脂組成物中で1次粒子の状態で分散している」(以下、一次分散とも呼ぶ。)とは、ポリマー微粒子同士が実質的に独立して(接触することなく)分散しており、ポリマー微粒子が硬化性樹脂組成物またはそれから得られる硬化物中の全体に個々の粒子として分散していることを意味する。
 ポリマー微粒子の分散状態は、例えば、硬化性樹脂組成物の一部をメチルエチルケトンのような溶剤に溶解し、これをレーザー光散乱による粒子径測定装置等により、その粒子径を測定することにより確認できる。または、硬化性樹脂組成物を硬化させた後、透過型電子顕微鏡(TEM)または走査型電子顕微鏡(SEM)を用いて観察すれば、容易に確認できる。ポリマー微粒子が組成物中で凝集している場合、粒子の凝集力が非常に強いため、組成物を溶剤で希釈しても凝集体を一次粒子に分離することはできない。また、硬化前の組成物においてポリマー微粒子が一次分散していないにもかかわらず、硬化後にポリマー微粒子が一次分散する可能性はなく、硬化物中においてポリマー微粒子が一次分散していれば、硬化前の組成物でもポリマー微粒子は一次分散している。
 本発明において、ポリマー微粒子は、硬化性樹脂組成物またはその硬化物中に、粉体のポリマー微粒子または凝固・乾燥されたポリマー微粒子を含まないことが好ましく、後述の通り、水性ラテックスに由来し、かつ凝固・乾燥されていないポリマー微粒子からなることが好ましい。かかるポリマー微粒子であれば、一次粒子の分散状態を容易に実現することができ、一方で粉体のポリマー微粒子であれば、一次粒子の分散状態を実現することが困難となる。

 特に限定されないが、分散状態を表す指標として、以下の(式1)で定義される粒子分散率を挙げることができる。粒子分散率は、20%以上が好ましく、40%以上がより好ましく、60%以上が更に好ましく、80%以上が特に好ましく、90%以上が最も好ましい。20%未満の場合には、得られる硬化物の接着性や耐衝撃性が十分ではない場合がある。

 粒子分散率(%)=(1-(B/B))100・・・(式1)
(なお、(式1)において、Bは、3個以上が接触しているゴム状ポリマー粒子(B)の個数B(なお、ある1個のゴム状ポリマー粒子(B)がn個に接触している場合、個数はn個とカウントする)であり、Bは、ゴム状ポリマー粒子(B)の総個数である。)

 また、ポリマー微粒子の「安定な分散」とは、ポリマー微粒子が、連続層中で凝集したり、分離したり、沈殿したりすることなく、定常的に通常の条件下にて、長期間に渡って、分散している状態を意味し、また、ポリマー微粒子の連続層中での分布も実質的に変化せず、また、これらの組成物を危険がない範囲で加熱することで粘度を下げて攪拌したりしても、「安定な分散」を保持できることが好ましい。

 (C)成分は単独で用いても良く2種以上併用しても良い。

 ポリマー微粒子(C成分)は特に限定されないが、コアシェル構造、すなわち2層以上のコアシェル構造を有することが好ましい。また、コア層を被覆する中間層と、この中間層をさらに被覆するシェル層とから構成される3層以上の構造を有することも可能である。

 以下、各層について具体的に説明する。
≪コア層≫
 コア層は、本発明の硬化性樹脂組成物の硬化物の靱性を高める為に、ゴムとしての性質を有する弾性コア層であることが好ましい。ゴムとして性質を有するためには、本発明の弾性コア層は、ゲル含量が60質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。なお、本明細書でいうゲル含量とは、凝固、乾燥により得られたポリマー微粒子0.5gをトルエン100gに浸漬し、23℃で24時間静置した後に不溶分と可溶分を分別したときの、不溶分と可溶分の合計量に対する不溶分の比率を意味する。

 ゴムとしての性質を有する弾性コア層を形成し得るポリマーとしては、天然ゴムや、ジエン系モノマー(共役ジエン系モノマー)および(メタ)アクリレート系モノマーから選ばれる少なくとも1種のモノマー(第1モノマー)を50~100質量%、および他の共重合可能なビニル系モノマー(第2モノマー)を0~50質量%含んで構成されるゴム弾性体や、ポリシロキサンゴム系弾性体、あるいはこれらを併用したものが挙げられる。得られる硬化物の靱性改良効果の点からジエン系モノマーを用いたジエン系ゴムが好ましい。この様に、前記(C)成分は、ジエン系ゴム、(メタ)アクリレート系ゴム、及びオルガノシロキサン系ゴムよりなる群から選択される1種以上のコア層を有することが好適である。なかでも、多種のモノマーの組合せにより、幅広いポリマー設計が可能なことから、(メタ)アクリレート系ゴムが好ましい。また、硬化物の耐熱性を低下させることなく、低温での耐衝撃性を向上しようとする場合には、弾性コア層はオルガノシロキサン系ゴムであることが好ましい。なお、本発明において(メタ)アクリレートとは、アクリレートおよび/またはメタクリレートを意味する。

 前記ジエン系ゴムは、例えばブタジエンゴム、およびブタジエン-スチレンゴムよりなる群から選択される1種以上であることが好ましい。
 弾性コア層に用いるジエン系ゴムを構成するモノマー(共役ジエン系モノマー)としては、例えば、1,3-ブタジエン、イソプレン、2-クロロ-1,3-ブタジエン、2-メチル-1,3-ブタジエンなどが挙げられる。これらのジエン系モノマーは、単独で用いても、2種以上を組み合わせて用いてもよい。
 靱性改良効果の点から、1,3-ブタジエンを用いるブタジエンゴム、または、1,3-ブタジエンとスチレンの共重合体であるブタジエン-スチレンゴムが好ましく、ブタジエンゴムがより好ましい。また、ブタジエン-スチレンゴムは、屈折率の調整により得られる硬化物の透明性を高めることができ、より好ましい。

 また、弾性コア層に用いる(メタ)アクリレート系ゴムを構成するモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレートなどのアルキル(メタ)アクリレート類;フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレートなどの芳香環含有(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート類;グリシジル(メタ)アクリレート、グリシジルアルキル(メタ)アクリレートなどのグリシジル(メタ)アクリレート類;アルコキシアルキル(メタ)アクリレート類;アリル(メタ)アクリレート、アリルアルキル(メタ)アクリレートなどのアリルアルキル(メタ)アクリレート類;モノエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレートなどの多官能性(メタ)アクリレート類などが挙げられる。これらの(メタ)アクリレート系モノマーは、単独で用いても、2種以上を組み合わせて用いてもよい。特に好ましくはエチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートである。

 上記第1モノマーと共重合可能なビニル系モノマー(第2モノマー)としては、例えば、スチレン、α-メチルスチレン、モノクロロスチレン、ジクロロスチレンなどのビニルアレーン類;アクリル酸、メタクリル酸などのビニルカルボン酸類;アクリロニトリル、メタクリロニトリルなどのビニルシアン類;塩化ビニル、臭化ビニル、クロロプレンなどのハロゲン化ビニル類;酢酸ビニル;エチレン、プロピレン、ブチレン、イソブチレンなどのアルケン類;ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジビニルベンゼンなどの多官能性モノマーなどが挙げられる。これらのビニル系モノマーは、単独で用いても、2種以上を組み合わせて用いてもよい。特に好ましくはスチレンである。

 また、弾性コア層を構成し得るオルガノシロキサン系ゴムとしては、例えば、ジメチルシリルオキシ、ジエチルシリルオキシ、メチルフェニルシリルオキシ、ジフェニルシリルオキシ、ジメチルシリルオキシ-ジフェニルシリルオキシなどの、アルキル或いはアリール2置換シリルオキシ単位から構成されるポリシロキサン系ポリマーや、側鎖のアルキルの一部が水素原子に置換されたオルガノハイドロジェンシリルオキシなどの、アルキル或いはアリール1置換シリルオキシ単位から構成されるポリシロキサン系ポリマーが挙げられる。これらのポリシロキサン系ポリマーは、単独で用いても、2種以上を組み合わせて用いてもよい。中でも、ジメチルシリルオキシ、メチルフェニルシリルオキシ、ジメチルシリルオキシ-ジフェニルシリルオキシが硬化物に耐熱性を付与する上で好ましく、ジメチルシリルオキシが容易に入手できて経済的でもあることから最も好ましい。

 弾性コア層がオルガノシロキサン系ゴムから形成される態様において、オルガノシロキサン系ポリマー部位は、硬化物の耐熱性を損なわないために、弾性体全体を100質量%として80質量%以上(より好ましくは90質量%以上)含有していることが好ましい。

 ポリマー微粒子の硬化性樹脂組成物中での分散安定性を保持する観点から、コア層は、上記モノマーを重合してなるポリマー成分やポリシロキサン系ポリマー成分に架橋構造が導入されていることが好ましい。架橋構造の導入方法としては、一般的に用いられる手法を採用することができる。例えば、上記モノマーを重合してなるポリマー成分に架橋構造を導入する方法としては、ポリマー成分に多官能性モノマーやメルカプト基含有化合物等の架橋性モノマーを添加し、次いで重合する方法などが挙げられる。また、ポリシロキサン系ポリマーに架橋構造を導入する方法としては、重合時に多官能性のアルコキシシラン化合物を一部併用する方法や、ビニル反応性基、メルカプト基などの反応性基をポリシロキサン系ポリマーに導入し、その後ビニル重合性のモノマーあるいは有機過酸化物などを添加してラジカル反応させる方法、あるいは、ポリシロキサン系ポリマーに多官能性モノマーやメルカプト基含有化合物などの架橋性モノマーを添加し、次いで重合する方法などが挙げられる。

 前記多官能性モノマーとしては、ブタジエンは含まれず、アリル(メタ)アクリレート、アリルアルキル(メタ)アクリレート等のアリルアルキル(メタ)アクリレート類;アリルオキシアルキル(メタ)アクリレート類;(ポリ)エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート等の(メタ)アクリル基を2個以上有する多官能(メタ)アクリレート類;ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジビニルベンゼン等が挙げられる。特に好ましくはアリルメタクリレート、トリアリルイソシアヌレート、ブタンジオールジ(メタ)アクリレート、及びジビニルベンゼンである。

 本発明において、コア層のガラス転移温度(以下、単に「Tg」と称する場合がある)は、得られる硬化物の靱性を高める為に、0℃以下であることが好ましく、-20℃以下がより好ましく、-40℃以下が更に好ましく、-60℃以下であることが特に好ましい。上記Tgの下限は、特に限定されず、例えば-150℃程度である。

 一方、得られる硬化物の弾性率(剛性)の低下を抑制したい場合には、コア層のTgは、0℃よりも大きいことが好ましく、20℃以上であることがより好ましく、50℃以上であることが更に好ましく、80℃以上であることが特に好ましく、120℃以上であることが最も好ましい。上記Tgの上限は、特に限定されないが、例えば約200℃程度である。

 Tgが0℃よりも大きく、得られる硬化物の剛性低下を抑制し得るコア層を形成し得るポリマーとしては、単独重合体のTgが0℃よりも大きい少なくとも1種のモノマーを50~100質量%(より好ましくは、65~99質量%)、および単独重合体のTgが0℃未満の少なくとも1種のモノマーを0~50質量%(より好ましくは、1~35質量%)含んで構成されるポリマーが挙げられる。

 コア層のTgが0℃よりも大きい場合も、コア層は架橋構造が導入されていることが好ましい。架橋構造の導入方法としては、前記の方法が挙げられる。

 前記単独重合体のTgが0℃よりも大きいモノマーは、以下のモノマーの一つ以上を含有するものが挙げられるが、これらに限定されるものではない。例えば、スチレン、2-ビニルナフタレン等の無置換ビニル芳香族化合物類;α-メチルスチレン等のビニル置換芳香族化合物類;3-メチルスチレン、4-メチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、3,5-ジメチルスチレン、2,4,6-トリメチルスチレン等の環アルキル化ビニル芳香族化合物類;4-メトキシスチレン、4-エトキシスチレン等の環アルコキシル化ビニル芳香族化合物類;2-クロロスチレン、3-クロロスチレン等の環ハロゲン化ビニル芳香族化合物類;4-アセトキシスチレン等の環エステル置換ビニル芳香族化合物類;4-ヒドロキシスチレン等の環ヒドロキシル化ビニル芳香族化合物類;ビニルベンゾエート、ビニルシクロヘキサノエート等のビニルエステル類;塩化ビニル等のビニルハロゲン化物類;アセナフタレン、インデン等の芳香族モノマー類;メチルメタクリレート、エチルメタアクリレート、イソプロピルメタクリレート等のアルキルメタクリレート類;フェニルメタクリレート等の芳香族メタクリレート;イソボルニルメタクリレート、トリメチルシリルメタクリレート等のメタクリレート類;メタクリロニトリル等のメタクリル酸誘導体を含むメタクリルモノマー;イソボルニルアクリレート、tert-ブチルアクリレート等のある種のアクリル酸エステル;アクリロニトリル等のアクリル酸誘導体を含むアクリルモノマーを挙げることができる。更に、アクリルアミド、イソプロピルアクリルアミド、N-ビニルピロリドン、ジシクロペンタニルメタクリレート、2-メチル-2-アダマンチルメタクリレート、1-アダマンチルアクリレート及び1-アダマンチルメタクリレート等のTgが120℃以上となるモノマーが挙げられる。

 また、コア層の体積平均粒子径は0.03~2μmが好ましいが、0.05~1μmがさらに好ましい。体積平均粒子径が0.03μm未満のものを安定的に得ることは難しい場合が多く、2μmを超えると最終成形体の耐熱性や耐衝撃性が悪くなる恐れがある。なお体積平均粒子径は、マイクロトラックUPA150(日機装株式会社製)を用いて測定することができる。

 コア層は、ポリマー微粒子全体を100質量%として40~97質量%が好ましく、60~95質量%がより好ましく、70~93質量%が更に好ましく、80~90質量%が特に好ましい。コア層が40質量%未満では硬化物の靱性改良効果が低下する場合がある。コア層が97質量%よりも大きいとポリマー微粒子が凝集し易くなり、硬化性樹脂組成物が高粘度となり取り扱い難い場合がある。

 本発明において、コア層は単層構造であることが多いが、多層構造であってもよい。また、コア層が多層構造の場合は、各層のポリマー組成が各々相違していてもよい。

≪中間層≫
 本発明では、必要により、中間層を形成させてもよい。特に、中間層として、以下のゴム表面架橋層を形成させてもよい。

 前記ゴム表面架橋層は、同一分子内にラジカル性二重結合を2以上有する多官能性モノマー30~100質量%、及びその他のビニルモノマー0~70質量%からなるゴム表面架橋層成分を重合してなる中間層重合体からなり、本発明の硬化性樹脂組成物の粘度を低下させる効果、ポリマー微粒子(C)の(A)成分あるいは(B)成分への分散性を向上させる効果を有する。また、コア層の架橋密度を上げたりシェル層のグラフト効率を高める効果も有する。

 前記多官能性モノマーの具体例としては、上述の多官能性モノマーと同じモノマーが例示されるが、好ましくはアリルメタクリレート、トリアリルイソシアヌレートである。

≪シェル層≫
 ポリマー微粒子の最も外側に存在するシェル層は、シェル形成用単量体を重合したものであるが、本発明に係る、ポリマー微粒子(C)と(A)成分あるいは(B)成分との相溶性を向上させ、本発明の硬化性樹脂組成物、又はその硬化物中においてポリマー微粒子が一次粒子の状態で分散することを可能にする役割を担うシェルポリマーからなる。

 このようなシェル層を形成するシェル重合体は、好ましくは前記コア層にグラフトしている。より正確には、シェル層の形成に用いる単量体成分が、コア層を形成するコアポリマーにグラフト重合して、実質的にシェルポリマー層とゴムコア層とが化学結合していることが好ましい。即ち、好ましくは、シェルポリマーは、コアポリマーの存在下に前記シェル形成用単量体をグラフト重合させることで形成されており、コアポリマーの一部又は全体を覆っている。この重合操作は、水性のポリマーラテックス状態で調製され存在するコアポリマーのラテックスに対して、シェル重合体の構成成分であるモノマーを加えて重合させることで実施できる。

 シェル層形成用モノマーとしては、(C)成分の硬化性樹脂組成物中での相溶性及び分散性の点から、例えば、芳香族ビニルモノマー、ビニルシアンモノマー、(メタ)アクリレートモノマー、水酸基を有するモノマーが好ましく、(メタ)アクリレートモノマー、水酸基を有するモノマーがより好ましく、水酸基を有するモノマーが特に好ましい。
 すなわち、前記(C)成分は、芳香族ビニルモノマー、ビニルシアンモノマー、及び(メタ)アクリレートモノマーよりなる群から選択される1種以上のモノマー成分を、コア層にグラフト重合してなるシェル層を有することが好ましく、前記(C)成分は、水酸基を有するモノマー成分を、コア層にグラフト重合してなるシェル層を有することが好ましい。

 硬化物や重合体中で(C)成分が凝集せずに良好な分散状態を維持するために、(A)成分あるいは(B)成分と化学結合させる観点から、シェル層形成用モノマーとして、エポキシ基、オキセタン基、水酸基、アミノ基、イミド基、カルボン酸基、カルボン酸無水物基、環状エステル基、環状アミド基、ベンズオキサジン基、及びシアン酸エステル基よりなる群から選ばれる1種以上を含有する反応性基含有モノマーを含有することが好ましく、水酸基を有するモノマーが好ましい。

 また、シェル層形成用モノマーとして、二重結合を2個以上有する多官能性モノマーを使用すると、硬化性樹脂組成物中においてポリマー微粒子の膨潤を防止し、また、硬化性樹脂組成物の粘度が低く取扱い性がよくなる傾向がある為好ましい。

 多官能性モノマーは、シェル形成用モノマー100質量%中に、1~20質量%含まれていることが好ましく、より好ましくは、5~15質量%である。

 前記芳香族ビニルモノマーの具体例としては、スチレン、α-メチルスチレン、p-メチルスチレン、ジビニルベンゼン等が挙げられる。

 前記ビニルシアンモノマーの具体例としては、アクリロニトリル、又はメタクリロニトリル等が挙げられる。

 前記(メタ)アクリレートモノマーの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等が挙げられる。

 前記エポキシ基を有するモノマーの具体例としては、グリシジル(メタ)アクリレート等が挙げられる。

 前記水酸基を有するモノマーの具体例としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシ直鎖アルキル(メタ)アクリレート(特に、ヒドロキシ直鎖C1-6アルキル(メタ)アクリレート);カプロラクトン変性ヒドロキシ(メタ)アクリレート;α-(ヒドロキシメチル)アクリル酸メチル、α-(ヒドロキシメチル)アクリル酸エチル等のヒドロキシ分岐アルキル(メタ)アクリレート、二価カルボン酸(フタル酸等)と二価アルコール(プロピレングリコール等)とから得られるポリエステルジオール(特に飽和ポリエステルジオール)のモノ(メタ)アクリレート等のヒドロキシル基含有(メタ)アクリレート類等が挙げられる。

 前記二重結合を2個以上有する多官能性モノマーの具体例としては、上述の多官能性モノマーと同じモノマーが例示されるが、好ましくはアリルメタクリレート、トリアリルイソシアヌレートである。

 これらのモノマー成分は、単独で用いても2種以上を組み合わせて用いてもよい。

 シェル層は、上記モノマー成分の他に、他のモノマー成分を含んで形成されてもよい。他のモノマー成分としては、例えば、(メタ)アクリルアミド誘導体、マレイミド誘導体、ビニルエーテル等が挙げられる。

 (メタ)アクリルアミド誘導体は、例えば(メタ)アクリルアミド(N-置換物を含む)等が挙げられる。マレイミド誘導体には、例えばマレイン酸イミド(N-置換物を含む)等が挙げられる。ビニルエーテルとしては、グリシジルビニルエーテル、アリルビニルエーテル等が挙げられる。

 水酸基を有するモノマー成分の含有率は、シェル層の形成に用いられる全モノマー成分の例えば1質量%以上(より好ましくは5質量%以上)、60質量%以下(より好ましくは50質量%以下)であることが好ましい。水酸基を有するモノマー成分の含有率が1質量%未満であると、ポリオールに対する相溶性もしくは親和性、あるいは樹脂原料との重縮合に関与する機能をポリマー微粒子に十分に付与できない場合がある。また、かかる含有率が60質量%を超えると、重合系が不安定となり、凝集・凝固が起こり易くなるという問題が生じる場合がある。

 また、硬化性樹脂組成物を硬化して得られる硬化物が優れた動的割裂抵抗力を発現する点から、水酸基を有するモノマー成分の含有率は、シェル層の形成に用いられる全モノマー成分の15質量%以下であることが好ましく、8質量%以下がより好ましく、4質量%以下が更に好ましく、2質量%以下が特に好ましく、水酸基を有するモノマー成分をシェル層に実質的に含有しない事が最も好ましい。

 また、硬化性樹脂組成物を硬化して得られる硬化物が優れたT字剥離接着強さを有する点から、水酸基を有するモノマー成分の含有率は、シェル層の形成に用いられる全モノマー成分の4質量%以上60質量%以下であることが好ましく、8質量%以上50質量%以下がより好ましく、15質量%以上40質量%以下が更に好ましい。

 シェル層のグラフト率は、70%以上(より好ましくは80%以上、さらには90%以上)であることが好ましい。グラフト率が70%未満の場合には、液状樹脂組成物の粘度が上昇する場合がある。なお、本明細書において、グラフト率の算出方法は下記の通りである。

 先ず、ポリマー微粒子を含有する水性ラテックスを凝固・脱水し、最後に乾燥してポリマー微粒子のパウダーを得る。次いで、ポリマー微粒子のパウダー2gをメチルエチルケトン(MEK)100gに23℃で24時間浸漬した後にMEK可溶分をMEK不溶分と分離し、さらにMEK可溶分からメタノール不溶分を分離した。そして、MEK不溶分とメタノール不溶分との合計量に対するMEK不溶分の比率を求めることによって算出した。

≪ポリマー微粒子の製造方法≫
(コア層の製造方法)
 本発明で用いるポリマー微粒子を構成するコア層を形成するポリマーが、ジエン系モノマー(共役ジエン系モノマー)および(メタ)アクリレート系モノマーから選ばれる少なくとも1種のモノマー(第1モノマー)を含んで構成される場合には、コア層の形成は、例えば、乳化重合、懸濁重合、マイクロサスペンジョン重合などによって製造することができ、例えばWO2005/028546号公報に記載の方法を用いることができる。

 また、コア層を形成するポリマーがポリシロキサン系ポリマーを含んで構成される場合には、コア層の形成は、例えば、乳化重合、懸濁重合、マイクロサスペンジョン重合などによって製造することができ、例えばWO2006/070664号公報に記載の方法を用いることができる。

(シェル層および中間層の形成方法)
 中間層は、中間層形成用モノマーを公知のラジカル重合により重合することによって形成することができる。コア層を構成するゴム弾性体をエマルジョンとして得た場合には、二重結合を2以上有するモノマーの重合は乳化重合法により行うことが好ましい。

 シェル層は、シェル層形成用モノマーを、公知のラジカル重合により重合することによって形成することができる。コア層、または、コア層を中間層で被覆して構成されるポリマー粒子前駆体をエマルジョンとして得た場合には、シェル層形成用モノマーの重合は乳化重合法により行うことが好ましく、例えば、WO2005/028546号公報に記載の方法に従って製造することができる。

 乳化重合において用いることができる乳化剤(分散剤)としては、ジオクチルスルホコハク酸やドデシルベンゼンスルホン酸などに代表されるアルキルまたはアリールスルホン酸、アルキルまたはアリールエーテルスルホン酸、ドデシル硫酸に代表されるアルキルまたはアリール硫酸、アルキルまたはアリールエーテル硫酸、アルキルまたはアリール置換燐酸、アルキルまたはアリールエーテル置換燐酸、ドデシルザルコシン酸に代表されるN-アルキルまたはアリールザルコシン酸、オレイン酸やステアリン酸などに代表されるアルキルまたはアリールカルボン酸、アルキルまたはアリールエーテルカルボン酸などの各種の酸類、これら酸類のアルカリ金属塩またはアンモニウム塩などのアニオン性乳化剤(分散剤);アルキルまたはアリール置換ポリエチレングリコールなどの非イオン性乳化剤(分散剤);ポリビニルアルコール、アルキル置換セルロース、ポリビニルピロリドン、ポリアクリル酸誘導体などの分散剤が挙げられる。これらの乳化剤(分散剤)は、単独で用いても、2種以上を組み合わせて用いてもよい。

 ポリマー粒子の水性ラテックスの分散安定性に支障を来さない限り、乳化剤(分散剤)の使用量は少なくすることが好ましい。また、乳化剤(分散剤)は、その水溶性が高いほど好ましい。水溶性が高いと、乳化剤(分散剤)の水洗除去が容易になり、最終的に得られる硬化物への悪影響を容易に防止できる。

 乳化重合法を採用する場合には、公知の開始剤、すなわち2,2’-アゾビスイソブチロニトリル、過酸化水素、過硫酸カリウム、過硫酸アンモニウムなどを熱分解型開始剤として用いることができる。

 また、t-ブチルパーオキシイソプロピルカーボネート、パラメンタンハイドロパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、t-ブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ヘキシルパーオキサイドなどの有機過酸化物;過酸化水素、過硫酸カリウム、過硫酸アンモニウムなどの無機過酸化物といった過酸化物と、必要に応じてナトリウムホルムアルデヒドスルホキシレート、グルコースなどの還元剤、および必要に応じて硫酸鉄(II)などの遷移金属塩、さらに必要に応じてエチレンジアミン四酢酸二ナトリウムなどのキレート剤、さらに必要に応じてピロリン酸ナトリウムなどのリン含有化合物などを併用したレドックス型開始剤を使用することもできる。

 レドックス型開始剤を用いた場合には、前記過酸化物が実質的に熱分解しない低い温度でも重合を行うことができ、重合温度を広い範囲で設定できるようになり好ましい。中でもクメンハイドロパーオキサイド、ジクミルパーオキサイド、t-ブチルハイドロパーオキサイドなどの有機過酸化物をレドックス型開始剤として用いることが好ましい。前記開始剤の使用量、レドックス型開始剤を用いる場合には前記還元剤・遷移金属塩・キレート剤などの使用量は公知の範囲で用いることができる。また二重結合を2以上有するモノマーを重合するに際しては公知の連鎖移動剤を公知の範囲で用いることができる。追加的に界面活性剤を用いることができるが、これも公知の範囲である。

 重合に際しての重合温度、圧力、脱酸素などの条件は、公知の範囲のものが適用できる。また、中間層形成用モノマーの重合は1段で行なっても2段以上で行なっても良い。例えば、弾性コア層を構成するゴム弾性体のエマルジョンに中間層形成用モノマーを一度に添加する方法、連続追加する方法の他、あらかじめ中間層形成用モノマーが仕込まれた反応器に弾性コア層を構成するゴム弾性体のエマルジョンを加えてから重合を実施する方法などを採用することができる。

<硬化触媒(D)>
 本発明の硬化性樹脂組成物には必要に応じて(D)成分として硬化触媒を使用することができる。硬化触媒としては、特に限定されず、通常使用されるウレタン化反応を促進する触媒が挙げられる。具体例としては、2-エチルヘキサン酸錫、バーサチック酸錫、2-エチルヘキサン酸ビスマス、酢酸カリウム、オクチル酸カリウム、オクチル酸鉛、ナフテン酸鉛、ナフテン酸ニッケル、オクチル酸コバルト等のカルボン酸金属塩;ジブチル錫ジラウレート、ジブチル錫マレエート、ジブチル錫フタレート、ジブチル錫ジオクタノエート、ジブチル錫ビス(2-エチルヘキサノエート)、ジブチル錫ビス(メチルマレエート)、ジブチル錫ビス(エチルマレエート)、ジブチル錫ビス(ブチルマレエート)、ジブチル錫ビス(オクチルマレエート)、ジブチル錫ビス(トリデシルマレエート)、ジブチル錫ビス(ベンジルマレエート)、ジブチル錫ジアセテート、ジオクチル錫ビス(エチルマレエート)、ジオクチル錫ビス(オクチルマレエート)、ジブチル錫ジメトキサイド、ジブチル錫ビス(ノニルフェノキサイド)、ジブテニル錫オキサイド、ジブチル錫ビス(アセチルアセトナート)、ジブチル錫ビス(エチルアセトアセテート)、ジブチル錫ビスイソオクチルチオグリコレート、ジブチル錫ジクロライド、ジブチル錫オキサイド、ジブチル錫オキサイドとシリケート化合物との反応物、ジブチル錫ジラウレート等のジアルキル錫ジカルボキシレートとシリケート化合物との反応物、ジブチル錫オキサイドとフタル酸エステルとの反応物等の4価の有機錫化合物;テトライソプロポキシチタニウム、テトラn-ブトキシチタニウム、ジイソプロポキシチタンビス(アセチルアセトナート)、ジイソプロポキシチタンビス(エチルアセトアセテート)などの有機チタネート類;アルミニウムトリス(アセチルアセトナート)、アルミニウムトリス(エチルアセトアセテート)、ジイソプロポキシアルミニウムエチルアセトアセテートなどの有機アルミニウム化合物類;ジルコニウムテトラキス(アセチルアセトナート)などのジルコニウム化合物類;トリアミルアミン、トリヘキシルアミン、トリオクチルアミン、トリアリルアミン、トリフェニルアミン、トリエタノールアミン、トリエチルアミン、トリプロピルアミン、ジエチルエタノールアミン、ジメチルアミノエトキシエタノール、N,N,N’-トリメチルアミノエチルエタノールアミン、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N’,N’-トリメチルアミノエチルピペラジン、N,N-ジメチルシクロヘキシルアミン、ビス(2-ジメチルアミノエチル)エーテル、グアニジン、ジフェニルグアニジン、2,4,6-トリス(ジメチルアミノメチル)フェノール、N-メチルモルホリン、N-エチルモルホリン、N-オクタデシルモルホリン、N-メチルピペラジン、N-メチル-N’-(2-ヒドロキシプロピル)ピペラジン、2-エチル-4-メチルイミダゾール、1,8-ジアザビシクロ(5,4,0)ウンデセン(DBU)、1,5-ジアザビシクロ(4,3,0)ノネン(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)などのアミン類化合物等が挙げられる。中でも、前記(D)成分は、黄変抑制の観点から、有機スズ化合物であることが好ましい。また、DBUのオクチル酸塩など、前記アミン類化合物とカルボン酸やフェノール類などの有機酸との塩は、潜在硬化性触媒として有効である。

 硬化触媒の量は、前記(A)成分と前記(B)成分の総量100質量部に対して、0.001~20質量部が好ましく、より好ましくは0.01~5質量部、さらに好ましくは0.05~2質量部、特に好ましくは0.1~1質量部である。0.001質量部未満では硬化が遅くなる場合がある。20質量部を超えると硬化が早すぎて取扱作業が困難になることがある。

<充填材>
 本発明の硬化性樹脂組成物には、充填材を添加することができる。充填材としては、フュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸、およびカーボンブラックの如き補強性充填材;重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸バリウム、ケイソウ土、焼成クレー、クレー、タルク、バライト、無水石膏、酸化チタン、ベントナイト、有機ベントナイト、酸化第二鉄、アルミニウム微粉末、フリント粉末、酸化亜鉛、活性亜鉛華、マイカ、亜鉛華、鉛白、リトポン、硫化亜鉛、シラスバルーン、ガラスミクロバルーン、フェノール樹脂や塩化ビニリデン樹脂の有機ミクロバルーン、PVC粉末、PMMA粉末など樹脂粉末の如き充填材;石綿、ガラス繊維およびフィラメントの如き繊維状充填材等が挙げられる。

 また、上記以外に,例えば、酸化チタン、クロム酸鉛、酸化クロム、ウルトラマリン、コバルトブルー、シアニンブルー、シアニングリーン、レーキレッド、キナクリドンレッドなどの着色顔料も用いることができる。

 充填材を使用する場合、その使用量は(A)成分と(B)成分の総量100質量部に対して1~250質量部であることが好ましく、より好ましくは10~200質量部である。

<難燃剤>
 本発明の硬化性樹脂組成物には、必要に応じて、ポリリン酸アンモニウム、トリクレジルホスフェートなどのリン系可塑剤、水酸化アルミニウム、水酸化マグネシウム、および、熱膨張性黒鉛などの難燃剤を添加することができる。上記難燃剤は単独で用いてもよく、2種以上併用してもよい。

 前記ポリリン酸アンモニウムとしては、従来公知のものを広く使用することができる。これらの中でも、耐水性の観点から、樹脂により被覆し、マイクロカプセル化されたポリリン酸アンモニウムや表面改質されたポリリン酸アンモニウム等の表面処理されたポリリン酸アンモニウムが好ましく、更に好ましくは表面をメラミンホルムアルデヒド樹脂で被覆されたものが好ましい。

 難燃剤を使用する場合、その使用量は(A)成分と(B)成分の総量100質量部に対して、5~200質量部であることが好ましく、より好ましくは10~100質量部の範囲で使用される。

<分散剤>
 本発明の硬化性樹脂組成物には、必要に応じて分散剤を添加することができる。該分散剤は、顔料とともに公知の方法に従って混合分散して得られる顔料分散ペーストを配合することも可能である。分散剤としては、市販されているものを使用することができる。市販品としては、例えば、ANTI-TERRA(登録商標)-U、ANTI-TERRA(登録商標)-U100、ANTI-TERRA(登録商標)-204、ANTI-TERRA(登録商標)-205、DISPERBYK(登録商標)-101、DISPERBYK(登録商標)-102、DISPERBYK(登録商標)-103、DISPERBYK(登録商標)-106、DISPERBYK(登録商標)-108、DISPERBYK(登録商標)-109、DISPERBYK(登録商標)-110、DISPERBYK(登録商標)-111、DISPERBYK(登録商標)-112、DISPERBYK(登録商標)-116、DISPERBYK(登録商標)-130、DISPERBYK(登録商標)-140、DISPERBYK(登録商標)-142、DISPERBYK(登録商標)-145、DISPERBYK(登録商標)-161、DISPERBYK(登録商標)-162、DISPERBYK(登録商標)-163、DISPERBYK(登録商標)-164、DISPERBYK(登録商標)-166、DISPERBYK(登録商標)-167、DISPERBYK(登録商標)-168、DISPERBYK(登録商標)-170、DISPERBYK(登録商標)-171、DISPERBYK(登録商標)-174、DISPERBYK(登録商標)-180、DISPERBYK(登録商標)-182、DISPERBYK(登録商標)-183、DISPERBYK(登録商標)-184、DISPERBYK(登録商標)-185、DISPERBYK(登録商標)-2000、DISPERBYK(登録商標)-2001、DISPERBYK(登録商標)-2008、DISPERBYK(登録商標)-2009、DISPERBYK(登録商標)-2022、DISPERBYK(登録商標)-2025、DISPERBYK(登録商標)-2050、DISPERBYK(登録商標)-2070、DISPERBYK(登録商標)-2096、DISPERBYK(登録商標)-2150、DISPERBYK(登録商標)-2155、DISPERBYK(登録商標)-2163、DISPERBYK(登録商標)-2164、BYK(登録商標)-P104、BYK(登録商標)-P104S、BYK(登録商標)-P105、BYK(登録商標)-9076、BYK(登録商標)-9077、BYK(登録商標)-220S、ANTI-TERRA(登録商標)-250、DISPERBYK(登録商標)-187、DISPERBYK(登録商標)-190、DISPERBYK(登録商標)-191、DISPERBYK(登録商標)-192、DISPERBYK(登録商標)-193、DISPERBYK(登録商標)-194、DISPERBYK(登録商標)-198、DISPERBYK(登録商標)-2010、DISPERBYK(登録商標)-2012、DISPERBYK(登録商標)-2015、DISPERBYK(登録商標)-2090、DISPERBYK(登録商標)-2091、DISPERBYK(登録商標)-2095(いずれもビックケミー社製)、DISPARLON(登録商標) 2150、DISPARLON(登録商標) KS-860、DISPARLON(登録商標) KS-873N、DISPARLON(登録商標) 7004、DISPARLON(登録商標) 1831、DISPARLON(登録商標) 1850、DISPARLON(登録商標) 1860、DISPARLON(登録商標) DA-1401、DISPARLON(登録商標) PW-36、DISPARLON(登録商標) DA-1200、DISPARLON(登録商標) DA-550、DISPARLON(登録商標) DA-703-50、DISPARLON(登録商標) DA-7301、DISPARLON(登録商標) DN-900、DISPARLON(登録商標) DA-325、DISPARLON(登録商標) DA-375、DISPARLON(登録商標) DA-234(いずれも楠本化成社製)、EFKAPOLYMER4550(EFKA社製)、ソルスパース(登録商標)27000、ソルスパース(登録商標)41000、ソルスパース(登録商標)53095(いずれもアビシア社製)等を挙げることができる。これらの中でも、ANTI-TERRA(登録商標)-U100、DISPERBYK(登録商標)-102、DISPERBYK(登録商標)-106、DISPERBYK(登録商標)-108、DISPERBYK(登録商標)-109、DISPERBYK(登録商標)-111、DISPERBYK(登録商標)-116、DISPERBYK(登録商標)-145、DISPERBYK(登録商標)-180、DISPERBYK(登録商標)-185、DISPERBYK(登録商標)-2008、DISPERBYK(登録商標)-2096、DISPERBYK(登録商標)-2155、BYK(登録商標)-P105、BYK(登録商標)-9076、BYK(登録商標)-9077、DISPERBYK(登録商標)-191、DISPERBYK(登録商標)-192、DISPERBYK(登録商標)-2090、DISPERBYK(登録商標)-2095、DISPARLON(登録商標) DA-550、DISPARLON(登録商標) DA-325、DISPARLON(登録商標) DA-375、DISPARLON(登録商標) DA-234は不揮発分含量が高く好ましい。

 分散剤の数平均分子量は、1000~10万であることが好ましい。1000未満であると十分な分散安定性が得られないおそれがあり、10万を超えると粘度が高すぎて取り扱いが困難となるおそれがある。より好ましくは、2000~5万であり、更に好ましくは、4000~5万である。

 分散剤を使用する場合、その使用量は(A)成分と(B)成分の総量100質量部に対して、0.1~10質量部であることが好ましく、より好ましくは0.2~3質量部、さらに好ましくは0.3~1質量部の範囲で使用される。

<消泡剤>
 本発明の硬化性樹脂組成物には、必要に応じて消泡剤を添加することができる。消泡剤としては、市販されているものを使用することができる。市販品としては、例えば、BYK(登録商標)-051、BYK(登録商標)-052、BYK(登録商標)-053、BYK(登録商標)-054、BYK(登録商標)-055、BYK(登録商標)-057、BYK(登録商標)-1752、BYK(登録商標)-1790、BYK(登録商標)-060N、BYK(登録商標)-063、BYK(登録商標)-065、BYK(登録商標)-066N、BYK(登録商標)-067A、BYK(登録商標)-077、BYK(登録商標)-088、BYK(登録商標)-141、BYK(登録商標)-354、BYK(登録商標)-392、BYK(登録商標)-011、BYK(登録商標)-012、BYK(登録商標)-017、BYK(登録商標)-018、BYK(登録商標)-019、BYK(登録商標)-020、BYK(登録商標)-021、BYK(登録商標)-022、BYK(登録商標)-023、BYK(登録商標)-024、BYK(登録商標)-025、BYK(登録商標)-028、BYK(登録商標)-038、BYK(登録商標)-044、BYK(登録商標)-093、BYK(登録商標)-094、BYK(登録商標)-1610、BYK(登録商標)-1615、BYK(登録商標)-1650、BYK(登録商標)-1730、BYK(登録商標)-1770などの消泡剤(いずれもビックケミー社製)や、DISPARLON(登録商標) OX-880EF、DISPARLON(登録商標) OX-881、DISPARLON(登録商標) OX-883、DISPARLON(登録商標) OX-883HF、DISPARLON(登録商標) OX-70、DISPARLON(登録商標) OX-77EF、DISPARLON(登録商標) OX-60、DISPARLON(登録商標) OX-710、DISPARLON(登録商標) OX-720、DISPARLON(登録商標)
 OX-720EF、DISPARLON(登録商標) OX-750HF、DISPARLON(登録商標) LAP-10、DISPARLON(登録商標) LAP-20、DISPARLON(登録商標) LAP-30等のアクリル系消泡剤、DISPARLON(登録商標) OX-66、DISPARLON(登録商標) OX-715等のシリコーン系アクリル系複合型消泡剤、DISPARLON(登録商標) 1950、DISPARLON(登録商標) 1951、DISPARLON(登録商標) 1952、DISPARLON(登録商標) P-410EF、DISPARLON(登録商標) P-420、DISPARLON(登録商標) P-450、DISPARLON(登録商標) P-425、DISPARLON(登録商標) PD-7等のビニル系消泡剤、DISPARLON(登録商標) 1930N、DISPARLON(登録商標) 1934等のシリコーン系消泡剤(いずれも楠本化成社製)等を挙げることができる。

 消泡剤を使用する場合、その使用量は(A)成分と(B)成分の総量100質量部に対して、0.05~10質量部であることが好ましく、より好ましくは0.2~5質量部、更に好ましくは0.3~3質量部の範囲で使用される。

<可塑剤>
 本発明の硬化性樹脂組成物には、必要に応じて可塑剤を添加することができる。可塑剤の添加により、硬化性樹脂組成物の粘度やスランプ性および組成物を硬化して得られる硬化物の引張り強度、伸びなどの機械特性が調整できる。可塑剤の例としては、ジブチルフタレート、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ブチルベンジルフタレート等のフタル酸エステル類;ジオクチルアジペート、ジオクチルセバケート、ジブチルセバケート、コハク酸イソデシル等の非芳香族二塩基酸エステル類;ジエチレングリコールベンゾエート、ジペンタエリスリトールへキサエステル等のグリコールエステル類;オレイン酸ブチル、アセチルリシリノール酸メチル等の脂肪族エステル類;トリクレジルホスフェート、トリブチルホスフェート等のリン酸エステル類;トリメリット酸エステル類;塩素化パラフィン類;アルキルジフェニル、部分水添ターフェニル等の炭化水素系油;プロセスオイル類;エポキシ化大豆油、エポキシステアリン酸ベンジル等のエポキシ可塑剤類をあげることができる。

 可塑剤の使用量が多いほど硬化性樹脂組成物の硬化物の強度が低下するため、可塑剤の使用量を低減する事が好ましく、可塑剤の使用量は、(A)成分と(B)成分の総量100質量部に対して100質量部以下が好ましく、50質量部以下がより好ましく、30質量部以下が更に好ましく、10質量部以下が特に好ましく、含有しないことが最も好ましい。

<溶剤>
 本発明の硬化性樹脂組成物には、組成物の粘度を低減し、チクソ性を高め、作業性を改善する目的で、必要に応じて溶剤を使用することができる。溶剤としては、特に限定は無く、各種の化合物を使用することができる。具体例としては、トルエン、キシレン、ヘプタン、ヘキサン、石油系溶媒等の炭化水素系溶剤、トリクロロエチレン等のハロゲン系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、ジブチルエーテル、ジペンチニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル系溶剤、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等のシリコーン系溶剤が例示される。溶剤を使用する場合、外気への汚染の問題から、溶剤の沸点は、150℃以上が好ましく、200℃以上がより好ましく、250℃以上が特に好ましい。これらの溶剤は、単独で使用してもよく、2種以上併用してもよい。
 但し、溶剤の配合量が多い場合には、環境への影響や人体への毒性が高くなる場合があるため、溶剤の使用量を低減する事が好ましい。その為、溶剤の配合量は、(A)成分と(B)成分の総量100質量部に対して、50質量部以下であることが好ましく、30質量部以下であることがより好ましく、10質量部以下であることが更に好ましく、溶剤を含まないことが特に好ましい。

 一方、本発明の(A)成分や(B)成分は、比較的低粘度な材料を選択可能であるために、非水系および/または非溶剤系(または溶剤含有量が少ないハイソリッド系)で塗布可能な組成物を設計し易い。水系エマルジョン組成物は、低温時または高湿時には塗膜形成に長時間が必要で、寒冷時に施工し難いという問題から、本発明の硬化性組成物は、非水系の硬化性組成物であることが好ましい。更に、環境負荷低減の観点から、本発明の硬化性組成物は、非溶剤系(またはハイソリッド系)の硬化性組成物であることが好ましい。

 非水系の硬化性組成物とする場合、本発明の硬化性組成物中の水の含有量は、(A)成分と(B)成分の総量100質量部に対し、10質量部以下が好ましく、1質量部以下がより好ましく、0.1質量部以下が更に好ましく、実質的に水を含有しないことが最も好ましい。水の含有量がこの範囲を上回ると、硬化物の物性が低下することがある。

<粘着性付与剤>
 本発明の硬化性樹脂組成物には、必要に応じて粘着性付与剤を添加することができる。粘着性付与剤としては、特に限定されないが、常温で固体、液体を問わず通常使用されるものを使用することができる。具体例としては、スチレン系ブロック共重合体、その水素添加物、フェノール樹脂、変性フェノール樹脂(例えば、カシューオイル変性フェノール樹脂、トール油変性フェノール樹脂等)、テルペンフェノール樹脂、キシレン-フェノール樹脂、シクロペンタジエン-フェノール樹脂、クマロンインデン樹脂、ロジン系樹脂、ロジンエステル樹脂、水添ロジンエステル樹脂、キシレン樹脂、低分子量ポリスチレン系樹脂、スチレン共重合体樹脂、石油樹脂(例えば、C5炭化水素樹脂、C9炭化水素樹脂、C5C9炭化水素共重合樹脂等)、水添石油樹脂、テルペン系樹脂、DCPD樹脂石油樹脂等が挙げられる。これらは単独で用いても良く、2種以上を併用しても良い。スチレン系ブロック共重合体及びその水素添加物としては、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-エチレンブチレン-スチレンブロック共重合体(SEBS)、スチレン-エチレンプロピレン-スチレンブロック共重合体(SEPS)、スチレン-イソブチレン-スチレンブロック共重合体(SIBS)等が挙げられる。上記粘着性付与剤は単独で用いてもよく、2種以上併用してもよい。

 粘着性付与剤を使用する場合、その使用量は(A)成分と(B)成分の総量100質量部に対して、5~100質量部であることが好ましく、より好ましくは10~50質量部の範囲で使用される。

<レベリング剤>
 本発明の組成物には、必要に応じてレベリング剤を添加することができる。レベリング剤としては市販されているものを使用することができる。市販品としては、例えば、BYKETOL(登録商標)-OK、BYKETOL(登録商標)-SPECIAL、BYKETOL(登録商標)-AQ、BYKETOL(登録商標)-WS(いずれもビックケミー社製)、DISPARLON(登録商標) 1970、DISPARLON(登録商標) 230、DISPARLON(登録商標) LF-1980、DISPARLON(登録商標) LF-1982、DISPARLON(登録商標) LF-1983、DISPARLON(登録商標) LF-1984、DISPARLON(登録商標) LF-1985(いずれも楠本化成社製)等を挙げることができる。

 レベリング剤を使用する場合、その使用量は(A)成分と(B)成分の総量100質量部に対して、0.05~10質量部であることが好ましく、より好ましくは0.2~5質量部、更に好ましくは0.3~3質量部の範囲で使用される。

<チクソ性付与剤>
 本発明の硬化性樹脂組成物には、必要に応じて垂れを防止し、作業性を良くするためにチクソ性付与剤(垂れ防止剤)を添加しても良い。垂れ防止剤としては特に限定されないが、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類等が挙げられる。充填材として示した前記ヒュームドシリカもまた、チクソ性付与剤として使用できる。また、特開平11-349916号公報に記載されているような粒子径10~500μmのゴム粉末や、特開2003-155389号公報に記載されているような有機質繊維を用いると、チクソ性が高く作業性の良好な組成物が得られる。これらチクソ性付与剤(垂れ防止剤)は単独で用いてもよく、2種以上併用してもよい。

 チクソ性付与剤を使用する場合、その使用量は(A)成分と(B)成分の総量100質量部に対して、例えば0.1~20質量部の範囲で使用される。

<エポキシ樹脂>
 本発明の硬化性樹脂組成物には、必要に応じてエポキシ樹脂を添加しても良い。
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、水添ビスフェノールA(又はF)型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、含アミノグリシジルエーテル樹脂やこれらのエポキシ樹脂に、ビスフェノールA(又はF)類、多塩基酸類等を付加反応させて得られるエポキシ化合物等、公知のエポキシ樹脂が挙げられる。

 エポキシ樹脂を使用する場合、その使用量は(A)成分と(B)成分の総量100質量部に対して、例えば0.1~30質量部の範囲で使用される。

<酸化防止剤>
 本発明の硬化性樹脂組成物には、必要に応じて酸化防止剤(老化防止剤)を使用することができる。酸化防止剤を使用すると硬化物の耐熱性を高めることができる。酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系が例示できるが、特にヒンダードフェノール系が好ましい。同様に、チヌビン(登録商標)622LD,チヌビン(登録商標)144,CHIMASSORB(登録商標)944LD,CHIMASSORB(登録商標)119FL(以上いずれもチバ・スペシャルティ・ケミカルズ株式会社製);MARK LA-57,MARK LA-62,MARK LA-67,MARK LA-63,MARK LA-68(以上いずれも旭電化工業株式会社製);サノール(登録商標)LS-770,サノール(登録商標)LS-765,サノール(登録商標)LS-292,サノール(登録商標)LS-2626,サノール(登録商標)LS-1114,サノール(登録商標)LS-744(以上いずれも三共株式会社製)に示されたヒンダードアミン系光安定剤を使用することもできる。

 酸化防止剤を使用する場合、その使用量は(A)成分と(B)成分の総量100質量部に対して0.1~10質量部の範囲で使用するのが好ましく、さらに好ましくは0.2~5質量部である。

<光安定剤>
 本発明の硬化性樹脂組成物には、必要に応じて光安定剤を使用することができる。光安定剤を使用すると硬化物の光酸化劣化を防止できる。光安定剤としてベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系化合物等が例示できるが、よりヒンダードアミン系化合物が好ましい。特に3級アミン含有ヒンダードアミン系光安定剤を用いるのが組成物の保存安定性改良のために好ましい。3級アミン含有ヒンダードアミン系光安定剤としてはチヌビン(登録商標)622LD,チヌビン(登録商標)144,CHIMASSORB(登録商標)119FL(以上いずれもBASF製);MARK LA-57,LA-62,LA-67,LA-63(以上いずれも株式会社アデカ製);サノール(登録商標)LS-765,LS-292,LS-2626,LS-1114,LS-744(以上いずれも三共株式会社製)などの光安定剤が例示できる。

 光安定剤を使用する場合、その使用量は(A)成分と(B)成分の総量100質量部に対して0.1~10質量部の範囲で使用するのが好ましく、さらに好ましくは0.2~5質量部である。

<紫外線吸収剤>
 本発明の硬化性樹脂組成物には、必要に応じて紫外線吸収剤を使用することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としてはベンゾフェノン系、ベンゾトリアゾール系、サリシレート系、置換トリル系及び金属キレート系化合物等が例示できるが、特にベンゾトリアゾール系化合物が好ましい。

 紫外線吸収剤を使用する場合、その使用量は(A)成分と(B)成分の総量100質量部に対して0.1~10質量部の範囲で使用するのが好ましく、さらに好ましくは0.2~5質量部である。フェノール系やヒンダードフェノール系酸化防止剤とヒンダードアミン系光安定剤とベンゾトリアゾール系紫外線吸収剤を併用して使用するのが好ましい。

<シランカップリング剤>
 本発明の硬化性樹脂組成物には、必要に応じてシランカップリング剤を添加することができる。シランカップリング剤添加により接着性を向上させることができる。具体例としては、γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、(イソシアネートメチル)トリメトキシシラン、(イソシアネートメチル)ジメトキシメチルシラン、(イソシアネートメチル)トリエトキシシラン、(イソシアネートメチル)ジエトキシメチルシラン等のイソシアネート基含有シラン類;γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリイソプロポキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリイソプロポキシシラン、γ-(6-アミノヘキシル)アミノプロピルトリメトキシシラン、3-(N-エチルアミノ)-2-メチルプロピルトリメトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-ベンジル-γ-アミノプロピルトリメトキシシラン、N-ビニルベンジル-γ-アミノプロピルトリエトキシシラン、N-シクロヘキシルアミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジエトキシメチルシラン、N-フェニルアミノメチルトリメトキシシラン、(2-アミノエチル)アミノメチルトリメトキシシラン、N,N’-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン等のアミノ基含有シラン類;N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン等のケチミン型シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン等のメルカプト基含有シラン類;γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基含有シラン類;β-カルボキシエチルトリエトキシシラン、β-カルボキシエチルフェニルビス(2-メトキシエトキシ)シラン、N-β-(カルボキシメチル)アミノエチル-γ-アミノプロピルトリメトキシシラン等のカルボキシシラン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリロイルオキシプロピルメチルジメトキシシラン、γ-アクリロイルオキシプロピルトリエトキシシラン、メタクリロイルオキシメチルトリメトキシシラン等のビニル型不飽和基含有シラン類;γ-クロロプロピルトリメトキシシラン等のハロゲン含有シラン類;トリス(3-トリメトキシシリルプロピル)イソシアヌレート等のイソシアヌレートシラン類等を挙げることができる。また、これらを変性した誘導体である、アミノ変性シリルポリマー、シリル化アミノポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリル化シリコーン、シリル化ポリエステル等もシランカップリング剤として用いることができる。シランカップリング剤の反応物としては、アミノシランとエポキシシランの反応物、アミノシランとイソシアネートシランの反応物、各種シランカップリング剤の部分縮合体等を挙げる事ができる。

 シランカップリング剤を使用する場合、その使用量は(A)成分と(B)成分の総量100質量部に対して、0.1~15質量部程度が好ましく、0.5~10質量部程度がより好ましく、1~5質量部程度が特に好ましい。配合量がこの範囲を下回ると、接着性や貯蔵安定性が十分ではない場合がある。一方、配合量がこの範囲を上回ると、硬化物の強度が低下する場合がある。

<脱水剤(E)>
 本発明の硬化性樹脂組成物には、必要に応じて(E)成分として脱水剤を添加することができる。脱水剤添加により組成物中に存在する水分を除去でき、保存安定性や硬化時の発泡などが改善される。具体例としては、ビニルトリメトキシシラン、酸化カルシウム、ゼオライト、p-トルエンスルホニルイソシアネート、3-エチル-2-メチル-2-(3-メチルブチル)-1,3-オキサゾリジン等のオキサゾリジン類などが挙げられ、これらは単独あるいは2種以上を組合わせて使用できる。

 脱水剤を使用する場合、その使用量は前記(A)成分と前記(B)成分の総量100質量部に対して、0.1~30質量部程度が好ましく、0.5~10質量部程度がより好ましく、1~5質量部程度が特に好ましい。

<その他の配合成分>
 本発明では、必要に応じて、その他の配合成分を使用することができる。その他の配合成分としては、加水分解安定剤、チタネート系カップリング剤、アルミネート系カップリング剤、離型剤、帯電防止剤、滑剤、低収縮剤、シリコーン界面活性剤等が挙げられる。

<硬化性樹脂組成物の製法>
 本発明の硬化性樹脂組成物は、(A)成分および(B)成分を主成分とする硬化性樹脂組成物中に、ポリマー微粒子(C)を含有する組成物であり、好ましくは、ポリマー微粒子(C)が1次粒子の状態で分散した組成物である。

 (A)成分あるいは(B)成分中に、ポリマー微粒子(C)を1次粒子の状態で分散させた組成物を得る方法は、種々の方法が利用できるが、例えば水性ラテックス状態で得られたポリマー微粒子を(A)成分と接触させた後、水等の不要な成分を除去する方法、ポリマー微粒子を一旦有機溶剤に抽出後に(A)成分と混合してから有機溶剤を除去する方法等が挙げられるが、国際公開WO2009/14037に記載の方法を利用することが好ましい。その具体的な製造方法は、順に、ポリマー微粒子(C)を含有する水性ラテックス(詳細には、乳化重合によってポリマー微粒子を製造した後の反応混合物)を、20℃における水に対する溶解度が5質量%以上40質量%以下の有機溶媒と混合した後、さらに過剰の水と混合して、ポリマー粒子を凝集させる第1工程と、凝集したポリマー微粒子(C)を液相から分離・回収した後、再度有機溶媒と混合して、ポリマー微粒子(C)の有機溶媒溶液を得る第2工程と、有機溶媒溶液をさらに(A)成分と混合した後、前記有機溶媒を留去する第3工程とを含んで調製されることが好ましい。

 (A)成分は、23℃で液状であると、前記第3工程が容易となる為、好ましい。「23℃で液状」とは、軟化点が23℃以下であることを意味し、23℃で流動性を示すものである。

 上記の工程を経て得た、(A)成分にポリマー微粒子(C)が1次粒子の状態で分散した組成物に、更に(A)成分、(B)成分、(D)成分、及び、前記その他配合成分の各成分を、必要により更に追加混合する事により、ポリマー微粒子(C)が1次粒子の状態で分散した本発明の硬化性樹脂組成物が得られる。

 各成分を混合する際は、通常使用される混合機などを用いて公知の方法で製造される。各種原料をプロペラ型/櫂型などの攪拌羽根の付いた混合槽、プラネタリーミキサー、ニーダー、ホーバルトミキサー、ハイスピードミキサー、ラインミキサー、ロールミル、サンドミル、アトライター、2軸ミキサーなどの混合機を用いて、必要ならば減圧下で均一に分散することにより得ることができる。混合物の粘度は、塗工方法に合わせて設計されてもよい。

<2液型硬化性樹脂組成物>
 本発明の硬化性樹脂組成物を2液型または多液型として使用する場合、本発明の各成分は、イソシアネート基含有成分<(B)成分、および/または、1より大きい当量比(NCO/活性水素含有基)で(A)成分と(B)成分を反応させて得たイソシアネート基を有するウレタンプレポリマー)>を含有する第1液と、水酸基を有する成分<(A)成分、および/または、1未満の当量比(NCO/活性水素含有基)で(A)成分と(B)成分を反応させて得た水酸基を有するウレタンプレポリマー>を含有する第2液として、別々の容器に保管し、使用直前に混合して使用する事が好ましい。この際、(A)成分、(B)成分、及び、前記ウレタンプレポリマー以外の成分、すなわち、(C)成分、(D)成分、及び、その他の配合成分は、前記の第1液に添加してもよく、前記の第2液に添加してもよい。保存安定性の点から、前記(B)成分を含有する第1液と、前記(A)成分と前記(C)成分と前記(D)成分を含有する第2液とからなる2液型硬化性樹脂組成物とする態様も本発明に含まれる。

<硬化物>
 本発明には、上記硬化性樹脂組成物を硬化して得られる硬化物が含まれる。本発明の硬化性樹脂組成物は、ポリマー微粒子が一次粒子の状態で分散していることから、これを硬化することによって、ポリマー微粒子が均一に分散した硬化物を容易に得ることができる。また、ポリマー微粒子が膨潤し難く、硬化性樹脂組成物の粘性が低いことから、硬化物を作業性よく得ることができる。

 上記硬化物において、ガラス転移温度は75℃以上であることが好ましく、より好ましくは80℃以上、さらに好ましくは90℃以上、さらにより好ましくは100℃以上、特に好ましくは110℃以上である。ガラス転移温度の上限は、特に限定されないが、200℃程度である。ガラス転移温度を高める場合には、ポリエーテルポリオールの官能基の数を増やせばよく、例えば3官能以上のポリエーテルポリオール、好ましくは4官能のポリエーテルポリオールを使用する。
 この場合、3官能以上のポリエーテルポリオールの量は、ポリオール100質量%中、20質量%以上であることが好ましく、より好ましくは30質量%以上、さらに好ましくは40質量%以上、さらにより好ましくは50質量%以上であり、100質量%以下であることが好ましく、より好ましくは99質量%以下、さらに好ましくは98質量%以下、さらにより好ましくは97質量%以下である。当該量が20質量%未満の場合、ガラス転移温度の向上が見込めない虞がある。
 4官能のポリエーテルポリオールの量は、ポリオール100質量%中、50質量%以上であることが好ましく、より好ましくは55質量%以上、さらに好ましくは60質量%以上であり、90質量%以下であることが好ましく、より好ましくは85質量%以下、さらに好ましくは80質量%以下である。当該量が50質量%未満の場合、ガラス転移温度の向上が見込めない虞があり、当該量が90質量%超である場合、剛性が高くなりすぎて、靭性が低下する虞がある。

<用途>
 本発明の硬化性樹脂組成物は、構造接着、インキバインダー、木材チップバインダー、ゴムチップ用バインダー、フォームチップバインダー、鋳物用バインダー、床材、セラミック、岩盤固結材、自動車内装材、一般木工、家具、内装、壁材、食品包装等の接着剤;コーティング材;繊維強化複合材料;自動車シート、自動車内装部品、吸音材、制振材、ショックアブソーバー、断熱材、工事用床材クッション等のウレタンフォーム;等の用途に好ましく用いられる。

 これらの中でも、高剛性・高弾性率を示しながら、靱性や接着性に優れる為、本発明の硬化性樹脂組成物を用いてなる構造接着剤又はコーティング材、及び、本発明の硬化性樹脂組成物を強化繊維のバインダーとして用いてなる繊維強化複合材料が本発明の特に好ましい態様に含まれる。

<構造接着剤>
 本発明の硬化性樹脂組成物は、冷間圧延鋼、アルミニウム、ファイバーグラスで強化されたポリエステル(FRP)、炭素繊維で強化されたエポキシ樹脂等の熱硬化性樹脂の硬化物のパネル、炭素繊維で強化された熱可塑性樹脂シートのパネル、シートモウルディングコンパウンド(SMC)、ABS、PVC、ポリカーボネート、ポリプロピレン、TPO、木材およびガラス等、種々の被着体へ良好な接着性を示す。

 本発明の硬化性樹脂組成物は低温(-20℃程度)から常温のみならず、高温(80℃程度)においても接着性および柔軟性に優れる。よって、本実施形態のウレタン樹脂接着剤組成物は構造用接着剤として好ましく用いることができる。

 したがって、本発明の硬化性樹脂組成物を用いた構造用接着剤は、例えば、自動車や車両(新幹線、電車)、土木、建築、建材、木工、電気、エレクトロニクス、航空機、宇宙産業分野等の構造部材の接着剤として使用することができる。特に、自動車関連の用途としては、天井、ドア、シート等の内装材の接着、ランプなどの自動車照明灯具、サイドモール等の外装材の接着等を挙げることができる。

<コーティング材>
 本発明の硬化性樹脂組成物をコーティング材として使用する場合、一般にコテやレーキを使用する場合は、混合物の粘度は500~9,000cps/25℃程度とし、またローラーやスプレーの場合は、100~3,000cps/25℃程度に調製する。本発明の硬化性樹脂組成物を、例えば床や廊下に施工するには、一般に実施されているウレタン塗り床材の施工法が適用できる。たとえば、素地調整した下地にプライマーを塗布後、施工条件に応じて、コテ、ローラー、レーキ、スプレーガンなどを用いて均一に塗工する。塗工後、硬化が進み、性能の良いウレタン舗装膜が得られる。本発明の硬化性樹脂組成物を硬化して得た塗膜は、耐荷重性や耐摩耗性に優れた塗膜が得られる。

 本発明の硬化性樹脂組成物を塗付する際の下地としては特に限定は無いが、具体的には、コンクリート壁、コンクリート板、コンクリートブロック、CMU(Concrete Masonry Unit)、モルタル板、ALC板、石膏板(Dens Glass Gold:Georgia Pacific社製など)、スレート板などの無機系下地や、木材、合板、OSB(Oriented Strand Board)などの木質系下地、アスファルト、変性ビチューメン、EPDM、TPOなどの防水シート、プラスチック、FRP、ウレタンフォーム断熱材などの有機系下地、金属パネルなどの金属系下地が挙げられる。

 本発明の硬化性樹脂組成物を、金属または多孔質下地に塗布した後、該硬化性樹脂組成物を硬化してなる積層体は、該下地への防食性に優れながら、耐クラック性や耐荷重性に優れた塗膜となる為、他の態様として本発明に含まれる。

 本発明の硬化性樹脂組成物を用いたコーティング材の塗付方法としては特に限定は無いが、コテ、レーキ、刷毛、ローラー、エアースプレー、エアレススプレーなどの公知の塗布方法により行うことができる。

 本発明の硬化性樹脂組成物を用いたコーティング材の用途としては、特に限定されないが、自動車、電気機器、事務機、建材、木材、塗り床、重防食、コンクリート防食、屋上・屋根防水や耐食・地下防水用の塗膜防水材、電着塗料、自動車補修、缶塗装、上塗り、中塗り、下塗り、プライマー、高耐候塗料、無黄変塗料、等が挙げられる。塗り床材、舗装材などに使用する場合、工場、実験室、倉庫、クリーンルームなどに使用できる。

<繊維強化複合材料>
 本発明の硬化性樹脂組成物を繊維強化複合材料として使用する場合、強化繊維としては、特に限定されないが、ガラス繊維、ガラス長繊維、炭素繊維、天然繊維、金属繊維、熱可塑性樹脂繊維、ボロン繊維、アラミド繊維、ポリエチレン繊維、ザイロン強化繊維等が挙げられる。特に、ガラス繊維や炭素繊維が好ましい。

 本発明の硬化性樹脂組成物を用いた複合材料の成形方法としては、特に限定されないが、プリプレグを用いたオートクレーブ成形法、フィラメントワインド成形法、ハンドレイアップ成形法、真空バッグ成形法、樹脂注入成形(RTM)法、バキュームアシスト樹脂注入成形(VARTM)法、引き抜き成形法、射出成形法、シートワインディング成形法、スプレーアップ法、BMC(Bulk Molding Compound)法、SMC(Sheet MoldingCompound)法等が挙げられる。

 特に、炭素繊維強化複合材料に用いる場合には、プリプレグを用いたオートクレーブ成形法、フィラメントワインド成形法、ハンドレイアップ成形法、真空バッグ成形法、樹脂注入成形(RTM)法、バキュームアシスト樹脂注入成形(VARTM)法等が好ましい。

 本発明の硬化性樹脂組成物を用いた複合材料の用途としては、特に限定されないが、航空機、宇宙機、自動車、自転車、船舶、兵器、風車、スポーツ用品、容器、建築材料、防水材、プリント基板、電気絶縁材料等が挙げられる。

 本発明の硬化性樹脂組成物を用いた複合材料に関する、強化繊維、成形方法、成形条件、配合剤、用途等のより詳細な内容については、米国公開特許2006/0173128号公報、米国公開特許2012/0245286号公報、特表2002-530445号公報(WO2000/029459)、特開昭55-157620(米国特許第4251428号公報)、特表2013-504007号公報(WO2011/028271)、特開2007-125889(米国公開特許2007/0098997号公報)、特開2003-220661(米国公開特許2003/0134085号公報)に記載された内容を挙げることができる。

<発泡体>
 本発明の硬化性樹脂組成物を発泡してなる発泡体も本発明に含まれる態様である。
 前記発泡体は、例えば、上記の通り、ポリマー微粒子(C)を分散させてなるポリオール(A)と、ポリイソシアネート(B)とを、硬化触媒、発泡剤および整泡剤の存在下で反応させる方法で製造されてもよい。
 発泡剤は、特に限定されるものではなく、ジクロロモノフルオロエタン、ハイドロフルオロカーボンなどのフロン系発泡剤を用いることもできるが、環境汚染の点から、水を用いることが好ましい。水はポリイソシアネートとの反応により生成する炭酸ガスを利用するために、環境上の問題がない。
 発泡剤の配合量は、ポリオール(A)成分100質量部に対して、通常0.01~10質量部の範囲であり、0.1~5質量部の範囲が好ましい。
 整泡剤は、通常用いられるものであれば、特に限定されるものではなく、例えば、各種シロキサン-ポリエーテルブロック共重合体等のシリコーン系界面活性剤を用いることができる。
 整泡剤の配合量は、ポリオール(A)成分100質量部に対して、通常0.01~5質量部であり、0.1~3質量部とすることが好ましい。

 本願は、2013年6月7日に出願された日本国特許出願第2013-120388号に基づく優先権の利益を主張するものである。2013年6月7日に出願された日本国特許出願第2013-120388号の明細書の全内容が、本願に参考のため援用される。

 以下、実施例および比較例によって本発明をより詳細に説明するが、本発明はこれらに限定されるものではなく、前・後記の趣旨に適合し得る範囲で適宜変更して実施することが可能であり、それらはいずれも本発明の技術的範囲に包含される。なお下記実施例および比較例において「部」および「%」とあるのは、質量部または質量%を意味する。

 評価方法
 先ず、実施例および比較例によって製造した硬化性樹脂組成物の評価方法について、以下説明する。

 [1]体積平均粒子径の測定
 水性ラテックスに分散しているポリマー微粒子の体積平均粒子径(Mv)は、マイクロトラックUPA150(日機装株式会社製)を用いて測定した。脱イオン水で希釈したものを測定試料として用いた。測定は、水の屈折率、およびそれぞれのポリマー微粒子の屈折率を入力し、計測時間600秒、Signal Levelが0.6~0.8の範囲内になるように試料濃度を調整して行った。

 [2]曲げ物性(曲げ弾性率、最大曲げ応力時の曲げひずみ)の測定
 硬化板サンプルを、長さ100mm、幅(b)10mm、厚さ(h)5mmのサイズの試験片に切削後、23℃で養生、その後、オートグラフAG-2000E(島津製作所製)を用いて、支点間距離(L)80mm、テストスピード2mm/分の条件にて3点曲げ試験を実施した。得られた荷重(F)-たわみ(e)曲線の初期傾き(F/e)を求め、曲げ弾性率(E)を下記の数式1より算出した。また、最大曲げ応力時のたわみ(efM)から、最大曲げ応力時の曲げひずみ(εfM)を下記の数式2より算出した。ここで、(F/e)はkN/mm単位、L、b、h、efMはmm単位である。
  E(GPa)=L(F/e)/(4bh)  <数式1>
  εfM(%)=600efMh/L        <数式2>

 [3]破壊靱性の測定
 硬化板サンプルを長さ2.5インチ、幅(b)0.5インチ、厚さ(h)5mmのサイズの試験片に切削後、ノッチングマシーンによりVノッチを入れた。その後、Vノッチ先端からカミソリ刃を用いて試験片中央までクラックを入れた。試験片を23℃で養生後、オートグラフAG-2000E(島津製作所製)を用い、支点間距離(L)50mm、テストスピード1mm/分の条件で3点曲げ試験を行なった。曲げ試験から得られた最大強度F(kN)を用い、下記の数式2、及び数式3に従い、破壊靱性値K1c(MPa・m1/2)を算出した。ここで、aはVノッチの深さとVノッチ先端からクラック先端までの長さの和であり、L、h、a、及びbはcm単位である。
  K1c=(FL/(hb3/2))f  <数式2>
  f=3(a/b)1/2AA/BB  <数式3>
  AA=1.99-(a/b){1-(a/b)}
      {2.15-3.93(a/b)+2.7(a/b)
  BB=2{1+2(a/b)}{1-(a/b)}3/2

 [4]T字剥離強度の測定
 JIS K 6854に従って、寸法:252000.5mmの2枚の冷間圧延鋼板(SPCC-SD)の間に、硬化性樹脂組成物を塗布し、貼り合せて、接着剤厚みを250μmとした。これを、80℃で3時間硬化させた。その後、試験片を23℃で、オートグラフAG-2000E(島津製作所製)を用い、テストスピード254mm/分の条件で180剥離試験を行なった。

 [5]動的割裂抵抗力(耐衝撃剥離接着性)
 硬化性樹脂組成物を、寸法:20900.8mmの2枚の冷間圧延鋼板(SPCC-SD)の間に塗布し、接着層厚み0.25mmとなるように重ね合せ、80℃で3時間硬化させ、ISO 11343に従って、23℃での動的割裂抵抗力を測定した。

 1.コア層の形成
 製造例1-1;ポリブタジエンゴムラテックス(R-1)の調製
 100L耐圧重合機中に、脱イオン水200質量部、リン酸三カリウム0.03質量部、リン酸二水素カリウム0.25質量部、エチレンジアミン四酢酸二ナトリウム(EDTA)0.002質量部、硫酸第一鉄・7水和塩(Fe)0.001質量部およびドデシルベンゼンスルホン酸ナトリウム(SDS)1.5質量部を投入し、撹拌しつつ十分に窒素置換を行なって酸素を除いた後、ブタジエン(BD)100質量部を系中に投入し、45℃に昇温した。パラメンタンハイドロパーオキサイド(PHP)0.015質量部、続いてナトリウムホルムアルデヒドスルホキシレート(SFS)0.04質量部を投入し重合を開始した。重合開始から4時間目に、PHP0.01質量部、EDTA0.0015質量部およびFe0.001質量部を投入した。重合10時間目に減圧下残存モノマーを脱揮除去して重合を終了し、ポリブタジエンゴム粒子を含むラテックス(R-1)を得た。得られたラテックスに含まれるポリブタジエンゴム粒子の体積平均粒子径は0.10μmであった。

 製造例1-2;ポリブタジエンゴムラテックス(R-2)の調製
 耐圧重合機中に、製造例1-1で得たポリブタジエンゴムラテックス(R-1)を21質量部(ポリブタジエンゴム7質量部を含む)、脱イオン水185質量部、リン酸三カリウム0.03質量部、EDTA0.002質量部、及び硫酸第一鉄・7水和塩0.001質量部を投入し、撹拌しつつ十分に窒素置換を行なって酸素を除いた後、ブタジエン(BD)93質量部を系中に投入し、45℃に昇温した。PHP0.02質量部、続いてSFS0.10質量部を投入し重合を開始した。重合開始から24時間目まで3時間おきに、それぞれ、PHP0.025質量部、及びEDTA0.0006質量部、及び硫酸第一鉄・7水和塩0.003質量部を投入した。重合30時間目に減圧下残存モノマーを脱揮除去して重合を終了し、ポリブタジエンゴムを主成分とするポリブタジエンゴムラテックス(R-2)を得た。得られたラテックスに含まれるポリブタジエンゴム粒子の体積平均粒子径は0.20μmであった。

 2.ポリマー微粒子の調製(シェル層の形成)
 製造例2-1;コアシェルポリマーラテックス(L-1)の調製
 3Lガラス容器に、製造例1-1で得たラテックス(R-1)1575質量部(ポリブタジエンゴム粒子510質量部相当)および脱イオン水315質量部を仕込み、窒素置換を行いながら60℃で撹拌した。EDTA0.024質量部、Fe0.006質量部、SFS1.2質量部を加えた後、グラフトモノマー(メチルメタクリレート(MMA)60質量部、4-ヒドロキシブチルアクリレート(4HBA)30質量部)、およびクメンヒドロパーオキサイド(CHP)0.3質量部の混合物を2時間かけて連続的に添加しグラフト重合した。添加終了後、更に2時間撹拌して反応を終了させ、コアシェルポリマー(C-1)のラテックス(L-1)を得た。得られたラテックスに含まれるコアシェルポリマーの体積平均粒子径は0.11μmであった。

 製造例2-2;コアシェルポリマーラテックス(L-2)の調製
 温度計、撹拌機、還流冷却器、窒素流入口、及びモノマーの添加装置を有するガラス反応器に、製造例1-2で得たポリブタジエンゴムラテックス(R-2)240質量部(ポリブタジエンゴム粒子80質量部を含む)、及び脱イオン水57質量部を仕込み、窒素置換を行いながら60℃で撹拌した。EDTA0.004質量部、硫酸第一鉄・7水和塩0.001質量部、及びSFS0.2質量部を加えた後、MMA18質量部、スチレン(ST)2質量部、及び、CHP0.06質量部の混合物を85分間かけて連続的に添加した。添加終了後、CHP0.04質量部を添加し、さらに1時間撹拌を続けて重合を完結させ、コアシェルポリマー(C-2)を含む水性ラテックス(L-2)を得た。モノマー成分の重合転化率は99%以上であった。得られた水性ラテックスに含まれるコアシェルポリマーの体積平均粒子径は0.21μmであった。

 製造例2-3;コアシェルポリマーラテックス(L-3)の調製
 製造例2-2において、グラフトモノマーとして<MMA18質量部、スチレン(ST)2質量部>の代わりに<MMA17.5質量部、ST2質量部、4HBA0.5質量部>を用いたこと以外は製造例2-2と同様にして、コアシェルポリマー(C-3)のラテックス(L-3)を得た。得られたラテックスに含まれるコアシェルポリマーの体積平均粒子径は0.21μmであった。

 製造例2-4;コアシェルポリマーラテックス(L-4)の調製
 製造例2-2において、グラフトモノマーとして<MMA18質量部、スチレン(ST)2質量部>の代わりに<MMA17質量部、ST2質量部、4HBA1質量部>を用いたこと以外は製造例2-2と同様にして、コアシェルポリマー(C-4)のラテックス(L-4)を得た。得られたラテックスに含まれるコアシェルポリマーの体積平均粒子径は0.21μmであった。

 製造例2-5;コアシェルポリマーラテックス(L-5)の調製
 製造例2-2において、グラフトモノマーとして<MMA18質量部、スチレン(ST)2質量部>の代わりに<MMA16質量部、ST2質量部、4HBA2質量部>を用いたこと以外は製造例2-2と同様にして、コアシェルポリマー(C-5)のラテックス(L-5)を得た。得られたラテックスに含まれるコアシェルポリマーの体積平均粒子径は0.21μmであった。

 製造例2-6;コアシェルポリマーラテックス(L-6)の調製
 製造例2-2において、グラフトモノマーとして<MMA18質量部、スチレン(ST)2質量部>の代わりに<MMA14質量部、ST2質量部、4HBA4質量部>を用いたこと以外は製造例2-2と同様にして、コアシェルポリマー(C-6)のラテックス(L-6)を得た。得られたラテックスに含まれるコアシェルポリマーの体積平均粒子径は0.21μmであった。

 3.硬化性樹脂中にポリマー微粒子(C)が分散した分散物の調製
 製造例3-1;分散物(M-1)の調製
 25℃の1L混合槽にメチルエチルケトン(MEK)132gを導入し、撹拌しながら、それぞれ前記製造例2-1で得られたコアシェルポリマー(C-1)の水性ラテックス(L-1)を132g(ポリマー微粒子40g相当)投入した。均一に混合後、水200gを80g/分の供給速度で投入した。供給終了後、速やかに撹拌を停止したところ、浮上性の凝集体および有機溶媒を一部含む水相からなるスラリー液を得た。次に、一部の水相を含む凝集体を残し、水相360gを槽下部の払い出し口より排出させた。得られた凝集体にMEK90gを追加して均一に混合し、コアシェルポリマーを均一に分散した分散体を得た。この分散体に、(A)成分である3官能ポリエーテルポリオールのPPT300(A-1:三井化学製、アクトコール T-300)80gを混合した。この混合物から、回転式の蒸発装置で、MEKを除去した。このようにして、(A)成分にポリマー微粒子が分散した分散物(M-1)を得た。

 製造例3-2;分散物(M-2)の調製
 製造例3-1において、PPT300(A-1)の代わりに2官能ポリエーテルポリオールのPPG1000(A-2:三井化学製、アクトコール D-1000)を用いたこと以外は製造例3-1と同様にして、ポリマー微粒子が分散した分散物(M-2)を得た。

 製造例3-3;分散物(M-3)の調製
 製造例3-1において、PPT300(A-1)の代わりに2官能ポリエーテルポリオールのPPG400(A-3:三井化学製、アクトコール D-400)を用いたこと以外は製造例3-1と同様にして、ポリマー微粒子が分散した分散物(M-3)を得た。

 製造例3-4~3-8;分散物(M-4~M-8)の調製
 25℃の1L混合槽にメチルエチルケトン(MEK)132gを導入し、撹拌しながら、それぞれ前記製造例2-2~2-6で得られたコアシェルポリマー(C-2~C-6)の水性ラテックス(L-2~L-6)を132g(ポリマー微粒子40g相当)投入した。均一に混合後、水200gを80g/分の供給速度で投入した。供給終了後、速やかに撹拌を停止したところ、浮上性の凝集体および有機溶媒を一部含む水相からなるスラリー液を得た。次に、一部の水相を含む凝集体を残し、水相360gを槽下部の払い出し口より排出させた。得られた凝集体にMEK90gを追加して均一に混合し、コアシェルポリマーを均一に分散した分散体を得た。この分散体に、(A)成分であるポリエステルポリオール(A-6:Bayer社製、Desmophen 1200、水酸基含有量5.0%)80gを混合した。この混合物から、回転式の蒸発装置で、MEKを除去した。このようにして、(A)成分にポリマー微粒子が分散した分散物(M-4~M-8)を得た。

(実施例1~2、比較例1~4)
 表1に示す処方にしたがって、(A)成分であるPPT300(A-1)またはPPG1000(A-2)、前記製造例3-1~2で得られた分散物(M-1~2)、(B)成分であるイソホロンジイソシアネート(B-1:和光純薬工業製)、(D)成分であるDBUのオクチル酸塩(サンアプロ製:U-CAT SA102)、脱水剤として、粉末状の合成ゼオライトA-3(200mesh通過分:和光純薬工業製)をそれぞれ計量し、よく混合して脱泡し硬化性樹脂組成物を得た。なお、表1の組成物中の(B)成分のイソシアネート基の総モル量(β)と(A)成分の水酸基の総モル量(α)との比の値(β/α)は、全て1.0である。表1の各組成物を、厚み5mmのスペーサーを挟んだ2枚のテフロン(登録商標)コート鋼板の間に注ぎ込み、熱風オーブン中80℃で3時間硬化させ、厚み5mmの硬化板を得た。実施例1~2と比較例1~2の硬化板は硬質の硬化板であった為、この硬化板を用いて前記の試験方法に従って、最大曲げ応力時の曲げひずみと破壊靭性K1cを測定した。試験結果を表1に示す。なお、実施例2と比較例2では、破壊靭性の測定の際に不安定破壊が起きず、有効なK1cの値が得られなかった。一方、比較例3~4の硬化板は軟質の硬化板であった為、曲げ物性や破壊靱性の測定ができなかった。そこで、JIS K 6251に従って、前記硬化板から3号ダンベル試験片を採取し、500mm/minの速度で23℃で引張試験を行い、その際の最大引張応力時の伸びを測定した。試験結果を表1に示す。

 表1から、本発明の硬化性樹脂組成物を硬化して得られた硬化物は、優れた破壊靭性を示すことがわかる。また、曲げひずみや引張伸びの値から、特定の平均水酸基価を有するポリエーテルポリオール(a1)とポリイソシアネート(B)とポリマー微粒子(C)を組み合わせた場合に、高い延性や高い伸び特性を示すことがわかる。

(実施例3~6、比較例5~8)
 表2に示す処方にしたがって、(A)成分である3官能ポリエーテルポリオールのPPT300(A-1:三井化学製、アクトコール T-300)、2官能ポリエーテルポリオールのPPG400(A-3:三井化学製、アクトコール D-400)、2官能ポリエーテルポリオールのPPG200(A-4:三洋化成製、サンニックスPP-200)、4官能ポリエーテルポリオールPPQ(A-5:三洋化成製、サンニックスHD―402)、前記製造例3-1または製造例3-3で得られた分散物(M-1またはM-3)を混合して混合液を作製した。この混合液を、60℃に加温保持しながら、乾燥窒素を溶液に1時間吹き込む、あるいは脱水剤(粉末状の合成ゼオライトA-3(200mesh通過分:和光純薬工業製)を添加することで混合液を乾燥した。なお、脱水剤を使用した場合は、次の工程では、脱水剤を除かず、そのまま使用した。つづいて、得られた混合液を、(B)成分であるポリメリックMDI(B-2:三井化学製、コスモネートM-200)および、必要あれば消泡剤(ビックケミー製、BYK(登録商標)-A500)とを、よく混合して脱泡し硬化性樹脂組成物を得た。なお、表2の組成物中の(B)成分のイソシアネート基の総モル量(β)と(A)成分の水酸基の総モル量(α)との比の値(β/α)は、全て1.1である。この組成物を、厚み5mmのスペーサーを挟んだ2枚のテフロン(登録商標)コート鋼板の間に注ぎ込み、熱風オーブン中130℃で3時間硬化させ、厚み5mmの硬化板を得た。この硬化板を用いて前記の試験方法に従って、曲げ弾性率および破壊靭性K1cを測定した。また、この硬化板のガラス転移温度をDSC(示差走査熱量測定)により測定した。試験結果を表2に示す。

 表2から、本発明の硬化性樹脂組成物は、弾性率が高く(高剛性)、かつ、優れた破壊靭性を示すことがわかる。環状構造を有する芳香族ポリイソシアネートである(B)成分を用いた場合に、ポリマー微粒子(C)との組み合わせによる破壊靱性改善効果が顕著である。また、(A)成分のうち、3官能以上の多官能ポリオールの含有量が多い場合に、高い耐熱性(ガラス転移温度が高い)を示すことがわかる。更に、(A)成分のうち、3官能以上の多官能ポリオールの含有量が多い場合に、ポリマー微粒子(C)との組み合わせによる破壊靱性改善効果が顕著である。

(実施例7、比較例9)
 表3に示す処方にしたがって、(A)成分である3官能ポリエーテルポリオールのPPT300(A-1:三井化学製、アクトコール T-300)、2官能ポリエーテルポリオールのPPG400(A-3:三井化学製、アクトコール D-400)、2官能ポリエーテルポリオールのPPG200(A-4:三洋化成製、サンニックスPP-200)、前記製造例3-1で得られた分散物(M-1)を混合して混合液を作製した。この混合液に脱水剤(粉末状の合成ゼオライトA-3(200mesh通過分:和光純薬工業製)、および充填剤であるシリカ(龍森製、クリスタライトC)を添加してよく混合した。なお、脱水剤を使用した場合は、次の工程では、脱水剤を除かず、そのまま使用した。つづいて、ポリオール・シリカ混合物を、(B)成分であるポリメリックMDI(B-2:三井化学製、コスモネートM-200)と、よく混合して脱泡し硬化性樹脂組成物を得た。なお、表3の組成物中の(B)成分のイソシアネート基の総モル量(β)と(A)成分の水酸基の総モル量(α)との比の値(β/α)は、全て1.1である。この組成物を、厚み5mmのスペーサーを挟んだ2枚のテフロン(登録商標)コート鋼板の間に注ぎ込み、熱風オーブン中110℃で3時間硬化させ、厚み5mmの硬化板を得た。この硬化板を用いて前記の試験方法に従って、ガラス転移温度、曲げ弾性率および破壊靭性K1cを測定した。試験結果を表3に示す。

 表3から、本発明の硬化性樹脂組成物は、弾性率が高く(高剛性)、かつ、優れた破壊靭性を示すことが判る。

(実施例8、比較例10)
 表4に示す処方にしたがって、(A)成分である3官能ポリエーテルポリオールのPPT300(A-1:三井化学製、アクトコール T-300)、2官能ポリエーテルポリオールのPPG400(A-3:三井化学製、アクトコール D-400)、2官能ポリエーテルポリオールのPPG200(A-4:三洋化成製、サンニックスPP-200)、前記製造例3-1で得られた分散物(M-1)を混合して混合液を作製した。この混合液を、60℃に加温保持しながら、乾燥窒素を混合液に1時間吹き込んで乾燥した。つづいて、得られた混合液に、発泡剤である水、整泡剤であるシリコーン系界面活性剤(東レダウコーニング社製、SH193)、(B)成分であるポリメリックMDI(B-2:三井化学製、コスモネートM-200)、(D)成分である1,4-ジアザビシクロ[2,3,2]オクタン溶液(シグマ・アルドリッチ製、DABCO 33-LV)とを加えて、よく混合し硬化性樹脂組成物を得た。なお、表4の組成物中の(B)成分のイソシアネート基の総モル量(β)と(A)成分の水酸基の総モル量(α)との比の値(β/α)は、全て1.1である。ついで、この組成物を、40℃に温調したテフロン(登録商標)コート鋼板からなる成形型に注ぎ込み、厚み5mmの発泡成形体を得た。この発泡成形体の重量と見かけ体積と未発泡成形体の比重から、成形密度を測定した。また、JIS K7111-1に従って、この発泡成形体を用いてシャルピー強度を測定した。試験結果を表4に示す。

 表4から、本発明の硬化性樹脂組成物は、高い耐衝撃性を示すことが判る。

(実施例9、比較例11)
 表5に示す処方にしたがって、(A)成分である3官能ポリエーテルポリオールのPPT300(A-1:三井化学製、アクトコール T-300)、2官能ポリエーテルポリオールのPPG400(A-3:三井化学製、アクトコール D-400)、2官能ポリエーテルポリオールのPPG200(A-4:三洋化成製、サンニックスPP-200)、前記製造例3-1で得られた分散物(M-1)を混合して混合液を作製した。この混合液を、60℃に加温保持しながら、乾燥窒素を混合液に1時間吹き込むことで混合液を乾燥した。つづいて、得られた混合液を、(B)成分であるポリメリックMDI(B-2:三井化学製、コスモネートM-200)を、よく混合して脱泡し硬化性樹脂組成物を得た。なお、表5の組成物中の(B)成分のイソシアネート基の総モル量(β)と(A)成分の水酸基の総モル量(α)との比の値(β/α)は、全て1.1である。この組成物を、195g/mの炭素繊維織物を8枚重ねた型に、吸引したのち、100℃で3時間加熱することで、炭素繊維強化成形体を得た。この得られた成形体を、長さ50mm、幅5mmのサイズの試験片に切削後、支点間距離を30mmに設定した3点曲げ試験を実施し、試験片が破壊するまでの変形量を比較した。変形量が大きい方が割れにくく、優れている。相対的により変形量が大きいものを「優」、小さいものを「劣」とした。結果を表5に示す。

 表5から、本発明の硬化性樹脂組成物を用いることで、割れにくい炭素繊維強化樹脂が得られることがわかる。

(実施例10、比較例12~14)
 表6に示す処方にしたがって、(A)成分であるPPT300(A-1)またはPPG1000(A-2)、前記製造例3-1~2で得られた分散物(M-1~2)、(B)成分であるポリメリックMDI(B-2:三井化学製、コスモネートM-200)、(D)成分であるDBUのオクチル酸塩(サンアプロ製:U-CAT SA102)、膠質炭酸カルシウム(白石工業製、白艶華CCR)、脱水剤として、粉末状の合成ゼオライトA-3(200mesh通過分:和光純薬工業製)をそれぞれ計量し、よく混合して脱泡し硬化性樹脂組成物を得た。なお、表6の組成物中の(B)成分のイソシアネート基の総モル量(β)と(A)成分の水酸基の総モル量(α)との比の値(β/α)は、全て1.1である。この組成物を用いて前記の試験方法に従って、T字剥離強度を測定した。試験結果を表6に示す。

 表6から、特定の平均水酸基価を有するポリエーテルポリオール(a1)とポリイソシアネート(B)とポリマー微粒子(C)を組み合わせた場合に、高いT字剥離強度を示し、本発明の硬化性樹脂組成物は、接着性に優れることが判る。

(実施例11~17、比較例15~16)
 表7に示す処方にしたがって、(A)成分であるポリエステルポリオール(A-6)またはポリエーテルポリオールPPG1000(A-2)、前記製造例3-2および製造例3-4~8で得られた分散物(M-2およびM-4~8)、(B)成分であるポリメリックMDI(B-2:三井化学製、コスモネートM-200)、ヒュームドシリカ(CABOT製、CAB-O-SIL TS-720)、脱水剤として、粉末状の合成ゼオライトA-3(200mesh通過分:和光純薬工業製)をそれぞれ計量し、よく混合して脱泡し硬化性樹脂組成物を得た。なお、表7の組成物中の(B)成分のイソシアネート基の総モル量(β)と(A)成分の水酸基の総モル量(α)との比の値(β/α)は、全て1.1である。この組成物を用いて前記の試験方法に従って、T字剥離強度と動的割裂抵抗力(耐衝撃剥離接着性)を測定した。試験結果を表7に示す。

 表7から、ポリエステルポリオール(a2)とポリイソシアネート(B)とポリマー微粒子(C)を組み合わせた場合に、高いT字剥離強度と高い動的割裂抵抗力を示し、本発明の硬化性樹脂組成物は、接着性に優れることが判る。

(実施例18)
 実施例1の硬化性樹脂組成物を用いて、モルタル板上に100μmの厚みで塗布した。これを80℃で3時間硬化し、積層体を得た。得られた積層体の塗膜は、衝撃に強い塗膜であった。この積層体の塗膜を室外の日当たりのよい場所に1年間放置したところ、塗膜の黄変が観察された。

(実施例19)
 実施例1の硬化性樹脂組成物の、(D)成分であるDBUのオクチル酸塩(サンアプロ製:U-CAT SA102)1質量部を、ジブチル錫ジラウレート0.01質量部に変更した硬化性樹脂組成物を用いて、実施例18と同様に、モルタル板上に100μmの厚みで塗布した。これを80℃で3時間硬化し、積層体を得た。得られた積層体の塗膜は、衝撃に強い塗膜であった。更に、この積層体の塗膜を室外の日当たりのよい場所に1年間放置したが、塗膜の黄変は観察されなかった。

(実施例20)
 実施例1の硬化性樹脂組成物を用いて、特表2002-530445号公報の実施例に従って、ガラス繊維強化複合材料を作製した。得られた複合材料は、高い靱性を示した。

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
WO2000029459A112 Nov 199925 May 2000Huntsman International LlcPolyisocyanurate compositions and composites
WO2005028546A11 Sep 200431 Mar 2005Kaneka Corporationゴム状重合体粒子の製造方法およびこれを含有する樹脂組成物の製造方法
WO2006070664A121 Dec 20056 Jul 2006Kaneka Corporationグラフト共重合体およびその製造方法、並びに該グラフト共重合体含有樹脂組成物
WO2009014037A116 Jul 200829 Jan 2009Kaneka Corporation樹脂組成物、および該樹脂組成物を用いた重縮合体
WO2011028271A21 Sep 201010 Mar 2011Bayer Materialscience LlcAutomated processes for the production of polyurethane wind turbine blades
JP2002530445A Title not available
JP2003155389A Title not available
JP2003220661A Title not available
JP2007125889A Title not available
JP2010116429A * Title not available
JP2011190286A * Title not available
JP2012251053A Title not available
JP2013504007A Title not available
JPH0349916A Title not available
JPS55157620A Title not available
US425142824 Sep 197917 Feb 1981Bayer AktiengesellschaftThermosetting molding compositions containing polyurethane and a fibrous material, and a process for the production of moldings
US2003013408510 Dec 200217 Jul 2003Peter HaasLaminated parts made of outer layers and polyurethane sandwich materials and their production
US2006017312829 Mar 20063 Aug 2006Huntsman International LlcPultrusion systems and process
US200700989972 Nov 20053 May 2007Bayer Materialscience LlcComposite articles and a process for their production
US2012024528625 Mar 201127 Sep 2012Bayer Materialscience LlcPolyurethane composites produced by a vacuum infusion process
Non-Patent Citations
Reference
1JOURNAL OF THE SOCIETY OF RUBBER INDUSTRY, JAPAN, vol. 68, 1995, pages 417
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
WO2015156295A1 *7 Apr 201515 Oct 2015株式会社カネカ熱可塑性ポリウレタン系樹脂組成物、導体被覆材及びこれらの製造方法
Legal Events
DateCodeEventDescription
21 Jan 2015121Ep: the epo has been informed by wipo that ep was designated in this application
Ref document number: 14806856
Country of ref document: EP
Kind code of ref document: A1
9 Sep 2015ENPEntry into the national phase in:
Ref document number: 2015521491
Country of ref document: JP
Kind code of ref document: A
4 Dec 2015WWEWipo information: entry into national phase
Ref document number: 14896295
Country of ref document: US
7 Dec 2015NENPNon-entry into the national phase in:
Ref country code: DE