WO2006070664A1 - グラフト共重合体およびその製造方法、並びに該グラフト共重合体含有樹脂組成物 - Google Patents

グラフト共重合体およびその製造方法、並びに該グラフト共重合体含有樹脂組成物 Download PDF

Info

Publication number
WO2006070664A1
WO2006070664A1 PCT/JP2005/023477 JP2005023477W WO2006070664A1 WO 2006070664 A1 WO2006070664 A1 WO 2006070664A1 JP 2005023477 W JP2005023477 W JP 2005023477W WO 2006070664 A1 WO2006070664 A1 WO 2006070664A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
graft copolymer
polyorganosiloxane
weight
copolymer
Prior art date
Application number
PCT/JP2005/023477
Other languages
English (en)
French (fr)
Inventor
Kazunori Saegusa
Hiroshi Tone
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to EP05820122A priority Critical patent/EP1832613B9/en
Priority to AT05820122T priority patent/ATE545666T1/de
Priority to US11/793,628 priority patent/US20080085975A1/en
Priority to JP2006550707A priority patent/JP5225584B2/ja
Priority to KR1020077016498A priority patent/KR101284971B1/ko
Priority to CN2005800451880A priority patent/CN101090919B/zh
Publication of WO2006070664A1 publication Critical patent/WO2006070664A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/452Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C08L51/085Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Definitions

  • Graft copolymer process for producing the same, and resin composition containing the graft copolymer
  • the present invention relates to a polyorganosiloxane-based graft copolymer. Specifically, the polyorganosiloxane (A) moiety, the polymer (C) moiety having at least a unit derived from a nitrogen atom-containing polyfunctional monomer (B) having two or more radical polymerizable groups in the molecule, and The present invention relates to a polyorganosiloxane-based graft copolymer comprising a polymer (E) moiety having a glass transition temperature derived from an ethylenically unsaturated monomer (D) of 40 ° C. or higher. The present invention also relates to a graft copolymer-containing resin composition containing the graft copolymer.
  • Background art the polyorganosiloxane (A) moiety, the polymer (C) moiety having at least a unit derived from a nitrogen atom-containing polyfunctional monomer (B) having two or more radical polymerizable groups in the
  • phosphorus-based flame retardants are frequently used as non-halogen flame retardants.
  • phosphorus-based flame retardants have many points that need to be improved, such as reduced heat resistance and impact resistance of the final molded product, which is not enough for toxicological problems.
  • the use of metal compounds as non-halogen and non-phosphorous flame retardants has been proposed, but these too may cause deterioration of mechanical properties if used in an amount necessary to obtain sufficient flame retardancy. Even so, the amount had to be reduced.
  • polymers having a low glass transition temperature such as polyorganosiloxane, polyalkyl (meth) atrelate (having a low glass transition temperature), polybutadiene, polyisobutylene, etc. are used as thermoplastic resin
  • a method of improving the properties such as impact resistance and tensile properties is widely used by blending and dispersing in a resin such as a curable resin and an elastomer.
  • polymers other than polyorganosiloxane have the problem of reducing the flame retardancy of the resin composition obtained by the addition, it is difficult to achieve both flame retardancy and mechanical properties. There are many. Low mechanical properties due to flame retardant When the polymer having the low glass transition temperature is blended for the purpose of covering the bottom, the flame retardancy is lowered. Therefore, when the amount of the flame retardant is increased, the mechanical characteristics are often lowered.
  • polyorganosiloxane is known to be effective in improving low-temperature mechanical properties, particularly when blended in the matrix resin, by taking advantage of its excellent low-temperature properties.
  • Polyorganosiloxane itself is a flammable material. It has less heat of combustion compared to other polymers with low glass transition temperature such as polyalkyl (meth) acrylate (low glass transition temperature), polybutadiene, etc.
  • the molded product of the resin composition obtained by blending the polyorganosiloxane with the resin has less reduction in flame retardancy than when blended with other polymers. In some cases, flame retardancy can be simultaneously imparted by utilizing the unique reaction of polyorganosiloxane.
  • polyorganosiloxane is blended into the above-mentioned matrix resin, which is poorly compatible with general resin components, and can be made sufficiently fine and uniform even if a molded product is obtained. Therefore, if it is used in a large amount, it often causes problems such as poor appearance of the molded body or delamination of the molded body to lower the mechanical strength. For this reason, attempts have been made to overcome the above-mentioned problems by chemically bonding a resin component having compatibility with the matrix resin to form a block copolymer or graft copolymer. Much has been done.
  • a graft copolymer obtained by grafting the resin component to the polyorganosiloxane component is advantageous in that the dispersion state of the polyorganosiloxane in the matrix resin can be controlled.
  • the efficiency is improved by using a polyorganosiloxane modified with a so-called graft-crosslinking unit having radical polymerization reactivity.
  • the power of well-known methods for forming graft copolymers Still, in general known graft copolymers, the resin component is not necessarily grafted to the polyorganosiloxane component efficiently. Some of them are present in a free state, and the ratio is large. In this case, the dispersion state of the polyorganosiloxane component in the molded body deteriorates, and the physical properties are not fully exhibited.
  • the modified polyorgano obtained by selecting a methacryloyloxy group-containing silane unit having high reactivity with the vinyl monomer forming the resin component.
  • a method has been disclosed in which a butyl monomer is graft-polymerized to a siloxane component to obtain a graft copolymer having high grafting efficiency and improving physical properties such as impact resistance of the final molded product (for example, JP-A-60). — See publication 252613).
  • This graft copolymer is effective in improving impact resistance, but at the same time, further improvement may be necessary when it is desired to impart or maintain flame retardancy.
  • a graft copolymer obtained by polymerizing a monomer composed mainly of a polyfunctional monomer typified by arylmethalate in the presence of polyorganosiloxane particles and further polymerizing a bull monomer is obtained. Disclosed (see, for example, Japanese Patent Laid-Open No. 2003-238639).
  • a graft copolymer that is strong has a high grafting efficiency to the polyorganosiloxane particles, even if a small amount of bur monomer is used, more polyorganosiloxane particles can be dispersed.
  • a thermoplastic resin especially a polycarbonate-based resin
  • not only impact resistance but also flame resistance can be exhibited well. It is shown.
  • further improvements are desired to meet today's market demands for a high degree of both impact and flame resistance.
  • the present invention provides a resin composition having excellent impact resistance at low temperatures, reduced halogen 'phosphorus content, and further non-halogen' non-phosphorous flame retardant and impact resistance. It is an object of the present invention to provide a resin composition having an excellent balance, and to provide a graft copolymer as an improving agent capable of providing a hard resin composition.
  • the present inventors are excellent in the effect of improving the impact resistance without impairing the flame retardancy of the specific graft copolymer, or flame retardant.
  • a resin composition with excellent impact resistance while maintaining or improving flame retardancy by improving the properties at the same time and blending the graft copolymer with a resin such as thermoplastic resin The inventors have found that a product can be obtained, and have completed the present invention.
  • the present invention relates to a polymer having at least a unit derived from a polyorganosiloxane (A) moiety and a nitrogen atom-containing polyfunctional monomer (B) having two or more radical polymerizable groups in the molecule.
  • E) relates to a polyorganosiloxane-based graft copolymer comprising a site .
  • the embodiment relates to the graft copolymer, wherein the content of the polyorganosiloxane (A) moiety is 65% by weight or more based on the graft copolymer.
  • the nitrogen atom-containing monomer (B) is a cyanuric acid derivative and a Z or isocyanuric acid derivative. About.
  • a preferred embodiment is obtained by polymerizing one or more monomers containing a nitrogen atom-containing multifunctional monomer (B) in the presence of the polyorganosiloxane (A). And the graft copolymer according to any one of the above.
  • the monomer containing the nitrogen atom-containing multifunctional monomer (B) is polymerized in one or more stages in the presence of the polyorganosiloxane (A), and the ethylenically unsaturated monomer is further polymerized.
  • a preferred embodiment relates to the graft copolymer described in any one of the above, wherein the graft ratio is 1.001 to 1.280.
  • a component contained in the graft copolymer and soluble in 2-butanone and insoluble in methanol was measured under the conditions of 30 ° C., 0.2 g ZlOOcm 3 acetone solution.
  • the graft copolymer has a weight average molecular weight of 10,000 or more determined by GPC, which is a component that is soluble in 2-butanone and insoluble in methanol.
  • GPC GPC
  • the present invention relates to a method for producing a graft copolymer, comprising the step of salt coagulating a latex containing any of the graft copolymers described above.
  • the graft copolymer is characterized by further including a step of washing the graft copolymer in a step after the salt coagulation of the latex containing the graft copolymer. It relates to the manufacturing method.
  • a preferred embodiment is characterized in that it includes a step of further diluting the dispersion containing the graft copolymer in a step after the salt coagulation of the latex containing the graft copolymer.
  • the present invention relates to a method for producing a graft copolymer.
  • the present invention after the latex containing the graft copolymer according to any one of the above is spray-dried, a step of washing the graft copolymer and Z or a metal salt having a valence of 2 or more are added.
  • the present invention relates to a method for producing a graft copolymer, comprising a step.
  • the present invention comprises any one of the graft copolymers described above, and at least one selected from the group consisting of thermoplastic resin, thermosetting resin and elastomer.
  • the present invention relates to a resin composition containing a graft copolymer.
  • the thermoplastic resin is a polycarbonate resin, a polyester resin, a polyester carbonate resin, a polyphenylene ether resin, a polyphenylene sulfide resin, a polysulfone resin, a polyether sulfone.
  • Polyarylene resin Polyamide resin, Polyetherimide resin, Polyacetal resin, Polyvinylacetal resin, Polyketone resin, Polyetherketone resin, Polyetheretherketone resin, Polyarylketone resin, Poly Ether-tolyl resin, liquid crystal resin, polybenzimidazole resin, polyparabanic acid resin, aromatic alcohol compound, methacrylic acid ester, acrylate ester, and cyanobi-louie compound strength Obtained by polymerizing or copolymerizing one or more types of Vinyl polymer or copolymer resin, gen-aromatic alkenyl compound copolymer resin, cyanobyl-gen-aromatic alkenyl compound copolymer resin, aromatic alkenyl compound Jen Xiangyi Buhl —N-phenolmaleimide copolymer resin, cyanide butyl (ethylene gen propylene (EPDM)) aromatic alkellui compound copolymer resin, polyolefin, salt vinyl -The graft copolymer
  • thermosetting resin is phenol resin, epoxy resin, urea resin, melamine resin, polyimide resin, polyamideimide resin, thermosetting polyester resin, alkyd resin. , Silicone resin, urethane resin, polybutyl ester resin, polyphthalic acid dialyl resin, bismaleimide-triazine resin, furan resin, xylene resin, guanamine resin, malein resin, dicyclopentagen resin
  • the present invention relates to the above-described graft copolymer-containing greaves composition characterized by being at least one selected from fats.
  • a preferred embodiment relates to the above-described graft copolymer-containing resin composition, wherein the elastomer is at least one selected from natural rubber and synthetic rubber.
  • the embodiment relates to the above-mentioned rosin composition containing a draft copolymer, comprising an aromatic polycarbonate.
  • a preferred embodiment relates to the above-mentioned graft copolymer-containing resin composition, further comprising a sulfur-containing organometallic salt.
  • a preferred embodiment relates to the graft copolymer-containing resin composition according to any one of the above, further comprising an antioxidant.
  • the polyorganosiloxane-based graft copolymer of the present invention is derived from a polyorganosiloxane (A) moiety, a nitrogen atom-containing polyfunctional monomer (B) having two or more radical polymerizable groups in the molecule.
  • the glass transition temperature derived from the ethylenically unsaturated monomer (D) is 40 ° C or higher in order to ensure compatibility with the polymer (C) part having at least the unit and the resin component as the matrix. It is a polyorganosiloxane graft copolymer comprising a polymer (E) moiety.
  • Examples of the strong copolymer include, for example, after the polymerization of the monomer containing the nitrogen atom-containing polyfunctional monomer (B) in the presence of polyorganosiloxane (A) in one or more stages, and further ethylenic
  • the polyorganosiloxane-based graft copolymer of the present invention can be easily obtained as a graft copolymer by polymerizing the unsaturated monomer (D) in one or more stages.
  • the polyorganosiloxane (A) used in the present invention a polymer (C) having at least units derived from a nitrogen atom-containing polyfunctional monomer (B) having two or more radically polymerizable groups in the molecule, Specific examples of the polymer (E) derived from the ethylenically unsaturated monomer (D) are described below.
  • the polyorganosiloxane (A) used in the present invention is a component for improving impact resistance particularly at low temperature without reducing flame retardancy, and in some cases, flame retardancy of a resin composition containing itself. It is a component that improves the properties.
  • polyorganosiloxanes such as polydimethylsiloxane, polymethylphenylsiloxane, polydimethylsiloxane-diphenylsiloxane copolymer, etc., and some of the side chain alkyl groups are substituted with hydrogen atoms.
  • the polyorganonoidogen siloxane prepared can be used.
  • polydimethylsiloxane, polymethylphenylsiloxane, and polydimethylsiloxane-diphenylsiloxane copolymer are preferable for imparting flame retardancy, and polydimethylsiloxane is most preferable because it is easily available economically. .
  • the low temperature characteristics may be further improved, and an ethylenically unsaturated monomer (described later) If the refractive index of the copolymer of the present invention is set to be close to that of the matrix resin together with D), it may be possible to impart transparency to the obtained resin composition.
  • the polyorganosiloxane (A) can express impact resistance and flame retardancy well, it is preferable to have a graft crossing group, and at least a plurality of graft crossing groups per molecule include side chains and Z or although it is more preferable to have it at the molecular chain end, it is particularly preferable to have it in the side chain.
  • the method for obtaining the polyorganosiloxane (A) is not particularly limited, and a solution polymerization method, a suspension polymerization method, an emulsion polymerization method and the like are used.
  • a method of polymerizing a cyclic, linear or branched organosiloxane, preferably a cyclic organosiloxane, using a catalyst such as an acid, an alkali, a salt or a fluorine compound can be mentioned.
  • the weight average molecular weight (Mw) of the organosiloxane used for the polymerization is Preferred ⁇ is 20,000 or less, more preferred ⁇ is 10,000 or less, more preferred ⁇ is 5,000 or less, and particularly preferably 2,500 or less.
  • a method using a silane having a graft crossing group together with the organosiloxane and a cyclic, linear, or branched organosiloxane having the same weight average molecular weight (Mw) having a Z or graft crossing group More preferably.
  • a method using a silane having a graft crossing group and a cyclic, linear or branched organosiloxane having the same weight average molecular weight (Mw) having a graft crossing group and Z or a graft crossing group without using the organosiloxane. can be more preferable.
  • Mw weight average molecular weight
  • a polyorganosiloxane having a weight average molecular weight (Mw) of preferably 20,000 or more in a solution, slurry or emulsion, and a graft having a weight average molecular weight (Mw) of preferably 20,000 or more examples thereof include a method of equilibrating a polyorganosiloxane having a crossover group in the presence of a catalyst as described above.
  • the polyorganosiloxane (A) is preferably in the form of particles in order to develop the impact resistance of the final molded article satisfactorily.
  • Such particles can be produced from organosiloxanes as described above by emulsion polymerization.
  • the modified or non-modified polyorganosiloxane (A) obtained by modifying the emulsion-like polyorganosiloxane as described above, solution polymerization method, etc. is mechanically used with a high-pressure homogenizer. It is possible to obtain emulsion of polyorganosiloxane (A) by forced emulsification.
  • the particles of polyorganosiloxane (A) are described in detail in JP-A-2000-226420, JP-A-2000-834392, US Pat. Nos. 2891920, 3294725, etc. It can be obtained by a known emulsion polymerization method.
  • 1, 3, 5, 7-cyclic typified by otamethylethylcyclotetrasiloxane (D4) Siloxane and bifunctional silanes with hydrolyzable groups such as Z or dimethyldimethoxysilane, trifunctional or higher functional alkoxysilanes such as methyltriethoxysilane and tetrapropyloxysilane, trifunctional such as methyl orthosilicate Condensates of the above silanes, and, if necessary, graph crossover such as mercaptopropyldimethoxymethylsilane, attaylyloxypropyldimethoxymethylsilane, methacryloyloxypropyldimethoxymethylsilane, vinyldimethoxymethylsilane, vinylphenyldimethoxymethylsilane, etc.
  • D4 otamethylethylcyclotetrasiloxane
  • hydrolyzable groups such as Z or dimethyldimethoxysilane
  • polyorganosiloxane (A) particles can be obtained.
  • the amount of the U ⁇ ⁇ ⁇ ⁇ grafting agent used is preferably 0. 3 mol% or more, more preferably 0.06 mol in terms of siloxane units in the resulting polyorganosiloxane in order to obtain good impact resistance in the final molded product.
  • % Or more more preferably 0.15 mol% or more, particularly preferably 0.5 mol% or more, 5 mol% or less, more preferably 3 mol% or less, and even more preferably 1 mol% or less.
  • the conditions at that time are preferably emulsified using a homogenizer together with water and a surfactant, and mechanically emulsified and dispersed under high pressure as necessary, and then an acid is added to adjust the pH to 4 or less, preferably Is 3 or less, more preferably 2 or less, or by adding a base and maintaining a pH of 8 or more, preferably 9.5 or more, and more preferably 11 or more, so that the polyorganosiloxane (A) particles Can be obtained.
  • the temperature during polymerization is 0 ° C or higher, preferably 30 ° C or higher, more preferably 50 ° C or higher, further 60 ° C or higher, 150 ° C or lower, preferably 120 ° C or lower, more preferably 95 °. C or less can be applied, and it can be preferably obtained by hydrolysis and condensation reaction in an inert gas atmosphere such as nitrogen or in a vacuum degassed state.
  • a seed polymerization method for example, a method using an organic polymer as seed particles disclosed in JP-A-63-202630, JP-A-63-202631, and JP-A-4-258636, JP-A-60-088040
  • a method using the polyorganosiloxane latex disclosed in the above as a seed latex more preferably a method using an organic polymer having swelling property against cyclic siloxane as disclosed in WO03Z068835, or a latex particle size of 20 nm. Or less, preferably 15 nm or less, more preferably lOnm or less polymer as seed particles
  • the method used can be employed.
  • the emulsion of the polyorganosiloxane (A) obtained by the above method contains a volatile low molecular weight cyclic siloxane.
  • a volatile low molecular weight cyclic siloxane for the purpose of removing this volatile low molecular weight cyclic siloxane, steam stripping as disclosed in US Pat. No. 4,600,436 and Japanese Patent Application Laid-Open No. 2002-249582 can be applied, or Japanese Patent Application Laid-Open No. 2002-121284.
  • a method of filtering the obtained polyorganosiloxane (A) after adsorbing the disclosed adsorbent such as diatomaceous earth to adsorb volatile low molecular weight cyclic siloxane can be applied.
  • the content of volatile low molecular weight siloxane is preferably 5% by weight or less, more preferably 1% by weight or less
  • the weight average molecular weight (Mw) is preferably 20,000 or less, more preferably 10,000 or less, More preferably, it is 5,000 or less, more preferably 2,500 or less, having a hydrolyzable group at the terminal, and if necessary, a mercaptopropyl group, a methacryloyloxypropyl group, an allyloyloxypropyl group, a bur group.
  • a linear or branched modified or non-modified (poly) organosiloxane partially substituted with a radical reactive group such as a butyl group or a aryl group can be used.
  • a radical reactive group such as a butyl group or a aryl group
  • the hydrolyzable group may include a hydroxyl group, an amino group, an alkoxyl group, an acyloxy group, a ketoxime group, an alkkenoxy group, an amide group, and an aminoxy group.
  • the modified or non-modified (poly) organosiloxane is used together with a graft crossing agent such as a silane having a radical reactive group, if necessary, and added with water, a surfactant, etc.
  • a homogenizer can be mechanically emulsified with a colloidal mill to achieve a desired particle size.
  • the polymerization temperature of the modified or non-modified (poly) organosiloxane is 0 ° C or higher, preferably 100 ° C or lower, more preferably 50 ° C or lower, even 30 ° C or lower, and the pH is preferably the same as described above.
  • the polyorganosiloxane (A) can be obtained by applying a method in which a similar range is used using an acid or a base.
  • the volatile low molecular weight can be determined by selecting the polymerization conditions.
  • the polyorganosiloxane (A) with reduced siloxane can be obtained.
  • surfactant that exhibits surface activity even under acidic conditions.
  • anionic surfactants such as alkyl sulfate metal salts, alkyl sulfonic acid metal salts, and alkyl aryl sulfonic acid metal salts.
  • the metal salt is preferably an alkali metal salt, particularly a sodium salt or potassium salt. Of these, sodium salt is preferred, and sodium dodecylbenzenesulfonate is most preferred.
  • polyoxyalkylene alkyl ethers typified by polyoxyethylene dodecyl ether
  • polyoxyalkylene alkyl aryl ethers typified by polyoxyethylene norphe ether
  • polyoxyalkylene higher grades typified by polyoxyethylene stearate ester.
  • Nonionic surfactants such as fatty acid esters and sorbitan monolaurate can be used. Alternatively, they can be used in combination with the anionic surfactant.
  • inorganic acids such as sulfuric acid, hydrochloric acid and nitric acid
  • organic acids such as dodecylbenzenesulfonic acid, dodecylsulfuric acid and trifluoroacetic acid
  • Alkylaryl sulfonic acid typified by dodecylbenzene sulfonic acid has a function not only as an acid component but also as a surfactant. In some cases, it may be used alone and is preferably used. However, these acids and surfactants may be either a single component or a combination of a plurality of components.
  • the latex is aged at room temperature for several hours or longer as necessary to increase the molecular weight of the polyorganosiloxane, and then sodium hydroxide, potassium hydroxide, carbonic acid is added. Stop the polymerization of siloxane by adding an inorganic base such as sodium or ammonia, or an organic base such as alkylamine or alkyl ammonium hydroxide, and neutralizing the system to a pH of 5-8. Can do.
  • an inorganic base such as sodium or ammonia
  • an organic base such as alkylamine or alkyl ammonium hydroxide
  • a surfactant that is basic but exhibits surface activity even if it is basic.
  • alkyl trimethylammonium salts such as dodecyltrimethylammonium bromide, stearyltrimethylammonium bromide, dialkyldimethylammonium salts such as didodecyldimethylammonium bromide, stearyldimethylbenzyl ammonium chloride
  • cationic surfactants such as alkyl aralkyl ammonium salts.
  • a nonionic surfactant as described above may be used or used in combination.
  • an inorganic base such as lithium hydroxide, potassium hydroxide, sodium hydroxide, cesium hydroxide, or an organic base such as alkyl ammonium hydroxide is used. it can.
  • Tetraorganoammoum hydroxides such as cetyltrimethylammonium hydroxide described in JP-A-2001-106787 have both functions of a cationic surfactant and a base. May be used alone, and is preferably used. However, these bases and surfactants are not limited to these and may be either a single component or a combination of a plurality of components.
  • an inorganic acid such as sulfuric acid or an organic acid such as acetic acid or dodecylbenzenesulfonic acid as described above. The polymerization of siloxane can be stopped.
  • the volume average particle diameter of the polyorganosiloxane (A) particles is preferably 0.008 to 0.6 ⁇ m, and more preferably 0.01 to 0.35 m force. In many cases, it is difficult to stably obtain a volume average particle size of less than 0.008 m. If it exceeds 0.6 m, the flame resistance and impact resistance of the final molded product may be deteriorated.
  • the volume average particle size can be measured using, for example, MICROTRAC UPA150 manufactured by Nikkiso Co., Ltd.
  • the weight average molecular weight of the polyorganosiloxane (A) used in the present invention is preferably 100,000 or more, more preferably ⁇ is 150,000 or more, and preferably ⁇ is 1,000,000 or less. ⁇ Is less than 700,000, and Sarako is less than 300,000. If the weight average molecular weight is too low, the flame resistance may deteriorate the impact resistance. In addition, if the weight average molecular weight is too high, productivity may decrease.
  • a standard polystyrene conversion value obtained by gel permeation chromatography (GPC) analysis can be used as the weight average molecular weight.
  • the polyorganosiloxane graft copolymer of the present invention (100% by weight of the entire copolymer)
  • the polyorganosiloxane (A) moiety is preferably contained in an amount of 65% by weight or more in order not to impair the flame retardancy of the obtained resin composition, and more preferably 75% by weight or more. Is preferably contained in an amount of 82.5% by weight or more.
  • the upper limit is preferably 99% by weight, more preferably 98% by weight, and even more preferably 95% by weight in order to improve the dispersion state of the polyorganosiloxane (A) component in the matrix resin.
  • the nitrogen atom-containing polyfunctional monomer having two or more radically polymerizable groups in the molecule is used.
  • Use of the functional monomer (B) can be expected to improve the following characteristics.
  • the grafting efficiency to the polyorganosiloxane (A) when polymerizing the ethylenically unsaturated monomer (D) described later can be increased, and thus the ethylenically unsaturated monomer can be improved.
  • the amount of the monomer (D) used can be minimized, and the proportion of the polyorganosiloxane (A) component can be relatively increased.
  • the amount of the ethylenically unsaturated monomer (D) that is a combustible component can be reduced, and the flame retardancy of the obtained resin composition can be suppressed or improved. Can do.
  • the heat resistance of the polyorganosiloxane copolymer itself can be improved. This is considered to be due to the high heat resistance of the polymer derived from the nitrogen atom-containing polyfunctional monomer (B).
  • it has poor flame retardancy compared with the use of metatalylate-based multifunctional monomers such as aryl methacrylate, 1,3-butylene glycol dimetatalylate, gens such as butadiene, and divinylbenzene. Can be suppressed or improved.
  • the nitrogen atom-containing polyfunctional monomer (B) used in the present invention includes tertiary amines such as triallylamine, diallyl isocyanurate, diallyl n-propyl isocyanurate, and triallyl.
  • Isocyanurate, trimethallyl isocyanurate, tris ((meth) atari mouth quichetil) Compounds having isocyanuric acid skeleton such as isocyanurate, compounds having cyanuric acid skeleton typified by triarylcyanurate, to tri (meth) atalyloyl
  • compounds having an isocyanuric acid skeleton, particularly triallyl isocyanurate, or compounds having a cyanuric acid skeleton, particularly triallyl isocyanurate, particularly preferred is triallyl cyanurate are most preferred.
  • the nitrogen atom-containing polyfunctional monomer (B) is co-polymerized with the monomer (B). It can be used as a mixture with other monomers that can be combined.
  • the proportion of the monomer (B) is preferably 5% by weight or more in the mixture, more preferably 20% by weight or more, more preferably 50% by weight or more, particularly preferably 80% by weight or more.
  • the preferred nitrogen atom-containing polyfunctional monomer (B) alone is most preferred in terms of flame retardancy.
  • other monomers copolymerizable with the monomer (B) include aromatics such as styrene, ⁇ -methylolstyrene, vinylenonaphthalene, and vinylenobiphenol.
  • Examples of powerful monomers include styrene, a methyl styrene, vinyl naphthalene, vinyleno bisphenol, alitaronitrinole, metatarilo nitrinole, methyl metatalylate, 2, 2, 1 divinino levie-nore, 2, 4, 1 Bivinino Levihue Ninore, 3, 3, —Dibinino Levihue-Nole, 4, 4, 1 Bibinino Levihue-Nole, 2, 4, 1 Di (2—Probe) Bi Phenyl, 4, 4, 1-di (2-probe) biphenyl, 2, 2, 1-dibule 4-ethyl 4'-propyl biphenyl, 3, 5, 4'-trivinyl biphenyl, etc. Can be given.
  • a polymer (C) can be obtained by polymerizing a monomer or monomer mixture containing such a nitrogen atom-containing polyfunctional monomer (B) using a known radical polymerization method.
  • the polymerization of the monomer containing the nitrogen atom-containing monomer (B) is preferably carried out by an emulsion polymerization method.
  • a known polymerization initiator that is, 2, 2'-azobisoxy-tolyl, hydrogen peroxide, potassium persulfate, ammonium persulfate, etc. is thermally decomposed. It can be used as an initiator.
  • Organic peroxides such as t-butylperoxyisopropyl carbonate, paramentane hydride peroxide, cumene hydride peroxide, dicumyl peroxide, t-butyl hydride peroxide, di-t-butyl peroxide, and tert-hexyl oxide
  • Peroxides such as inorganic peracids such as hydrogen peroxide, potassium persulfate, and ammonium persulfate, and reduction of sodium formaldehyde sulfoxylate and glucose as necessary.
  • transition metal salts such as iron sulfate ( ⁇ )
  • chelating agents such as disodium ethylenediamine tetraacetate
  • phosphorus-containing compounds such as sodium pyrophosphate if necessary. It can also be used as a redox type polymerization initiator in combination.
  • the peroxide does not substantially thermally decompose! Since the polymerization can be performed even at a low temperature, the polymerization temperature can be widened in a range. This is preferable because it can be set. Among them, it is preferable to use an aromatic ring-containing peroxide such as cumene hydride peroxide and dicumyl peroxide as a redox polymerization initiator.
  • the amount of the polymerization initiator used, and the amount of the reducing agent / transition metal salt / chelating agent used when a redox type polymerization initiator is used can be used within a known range.
  • a known chain transfer agent can be used within a known range.
  • a surfactant can be additionally added, and this can also be used within a known range.
  • Conditions such as polymerization temperature, pressure, deoxygenation, etc. in the above polymerization can be in the known ranges.
  • the polymerization of the monomer containing the nitrogen atom-containing monomer (B) is performed in one stage. You can do it in two steps or more! A method in which a monomer containing the nitrogen atom-containing monomer (B) is added to the polyorganosiloxane (A) emano region at once, a method in which the monomer is added continuously, or a simple substance containing the nitrogen atom-containing monomer (B) in advance. It is possible to appropriately employ a method in which polymerization of polyorganosiloxane (A) is carried out by superimposing the emulsion of polyorganosiloxane (A) in a reactor charged with a monomer.
  • the nitrogen atom-containing polyfunctional monomer (B) The content of the polymer (C) part having at least the unit derived from is preferably 0.1% by weight or more, more preferably 0.5% by weight in order not to impair the flame retardancy of the obtained resin composition. In addition, it is 1% by weight or more, preferably 30% by weight or less, more preferably 20% by weight or less, and further 10% by weight or less, and the most preferable range is 1 to 5% by weight.
  • the ethylenically unsaturated monomer (D) used in the present invention is a component introduced into a polymer in order to ensure compatibility between the polyorganosiloxane-based graft copolymer of the present invention and a matrix resin. It is.
  • the glass transition temperature of the polymer (E) obtained by polymerizing the ethylenically unsaturated monomer (D) is 40 ° C or higher, preferably 60 ° C or higher. 90 ° C or more is more preferable.
  • the ethylenically unsaturated monomer (D) may be polymerized in one stage or in two or more stages, but it may be polymerized in two or more stages. It is preferable to adjust the monomer composition so that the temperature satisfies the aforementioned range.
  • the ethylenically unsaturated monomer (D) may be a single compound or a mixture of two or more compounds, but the glass transition temperature of the resulting polymer should be set as described above. Is preferred.
  • the glass transition temperature referred to in the present invention can be substituted by the one described in the fourth edition of “Polymer Handbook” published by John Wiley & Son, 1999. If it is a copolymer, the weight fraction in the copolymer Paying attention to monomer units occupying 5% or more, the glass transition temperature and the weight fraction power of the homopolymer of each monomer component can be substituted with those calculated based on the Fox equation.
  • Specific examples of the monomer used as the ethylenically unsaturated monomer (D) include aromatic butyl monomers such as styrene, oc-methylstyrene, urnaphthalene, and birbiphenol, and acrylonitrile.
  • aromatic bur monomers such as styrene, a-methyl styrene, burnaphthalene, and birbiphenol, and cyanide bur monomers such as acrylonitrile are used.
  • alkyl (meth) acrylates having 2 or less carbon atoms in the alkyl group, such as methyl, methyl methacrylate, ethyl methacrylate, methyl acrylate, and ethyl acrylate.
  • a monomer having a glass transition temperature of a homopolymer of 40 ° C or higher, more preferably 60 ° C or higher, and more preferably 90 ° C or higher can provide even better flame retardancy. It can.
  • Specific examples of such monomers include styrene, a-methylstyrene, vinyl naphthalene, burbiphenyl, acrylonitrile, methatalonitrile, and methyl methacrylate.
  • carboxyl group-containing bull monomers such as itaconic acid, (meth) acrylic acid, fumaric acid and maleic acid, 4 styrene sulfonic acid, 2 acrylamide 2-butylpropane sulfonic acid group-containing bulls System monomers or their sodium salts, potassium salts, calcium salts, magnesium salts, aluminum salts, organic phosphate salts, organic sulfur salts, organic ammonium salts, glycidyl meta Use together with functional group-containing butyl monomers such as epoxy group-containing butyl monomers such as tallylate, hydroxyl group-containing butyl monomers such as 2-hydroxyethyl methacrylate and 4-hydroxybutyl acrylate. You can also.
  • Specific chain transfer agents include ⁇ -vinene, terpinolene, limonene and other unsaturated terpenes, ⁇ -octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-decyl mercaptan, 2-ethyl Examples thereof include mercabtans such as xylthioglycolate, among which the mercabtans are preferably used. Further, 2-ethylhexyl thioglycolate is most preferably used because a polyorganosiloxane graft copolymer or rosin composition can be obtained without odor.
  • the amount of the chain transfer agent used relative to the ethylenically unsaturated monomer (D) is preferably 0.
  • the use exceeding 10% by weight reduces the grafting efficiency of the polymer produced from the ethylenically unsaturated monomer (D), so that the polyorganosiloxane graft copolymer of the present invention is used in the matrix resin. Dispersibility may be reduced and flame retardancy and mechanical properties may be adversely affected.
  • a polyorganosiloxane-based copolymer containing a polymer (C) moiety having at least a polymer (C) moiety having at least a unit derived from the above-described polyorganosiloxane (A) moiety and a nitrogen atom-containing monomer (B) was obtained as an emulsion.
  • the polymerization of the ethylenically unsaturated monomer (D) is preferably performed by an emulsion polymerization method.
  • a method in which the components are adsorbed on the ethylenically unsaturated monomer (D) droplet, and the polymerization of the ethylenically unsaturated monomer (D) is continued (hereinafter referred to as suspension seed polymerization method). Etc. can be adopted.
  • the polymerization initiator system, the surfactant, and the amount thereof used for emulsion polymerization of the ethylenically unsaturated monomer (D), and the conditions such as polymerization temperature, pressure, deoxygenation, stirring, etc. are as described above. This is the same as the case of polymerizing the monomer containing the nitrogen atom-containing polyfunctional monomer (B).
  • peroxides such as lauroyl peroxide and benzoyl peroxide, and azo compounds such as azobisisobutyrate-tolyl are preferably used.
  • the agent is dissolved in the ethylenically unsaturated monomer (D) in advance, and then suspended, and the temperature of the reaction solution is preferably 60 ° C or higher, more preferably 70 ° C or higher, and even 80 Polymerization can be started by raising the temperature to above ° C.
  • a protective colloid agent such as polyvinyl alcohol, polyethylene oxide or calcium phosphate can be used to prevent the suspended particles from becoming unstable and coarsening.
  • Known conditions can be applied to the initiator, the amount of the protective colloid agent used, and the conditions such as pressure, deoxygenation, and stirring.
  • the polyorganosiloxane-based graft copolymer of the present invention (the total amount of siloxane and monomer units constituting the copolymer is 100% by weight), it is derived from the ethylenically unsaturated monomer (D).
  • the content of the polymer (E) is preferably 0.5% by weight or more, more preferably 3% by weight or more, and even more preferably 5% by weight or more so as not to impair the flame retardancy of the obtained resin composition. It is preferably 34.9% by weight or less, more preferably 24.5% by weight or less, and even more preferably 15% by weight or less.
  • the latex has a divalent or higher valence such as calcium chloride, magnesium chloride, magnesium sulfate, and aluminum chloride.
  • the graft copolymer can be separated from the aqueous medium by solidification by adding a metal salt, followed by heat treatment, dewatering, washing and drying (coagulation method).
  • a metal salt such as calcium chloride, magnesium chloride, magnesium sulfate, and aluminum chloride.
  • the slurry is preferably diluted 20 times, more preferably 30 times, and even more than 50 times the solid content of the graft copolymer before dehydration, or grafted in the post-dehydration step.
  • the copolymer solids content is preferably 3 times, more preferably 5 times, and even 10 times or more solvent, preferably water is sprayed from the viewpoint of environmental impact.
  • a water-soluble organic solvent such as methanol, ethanol, propanol or the like, acetone or the like is added to the latex to precipitate the copolymer, separated from the solvent by centrifugation or filtration, and then dried. It can also be separated.
  • a slightly water-soluble organic solvent such as methylethylketone is added to the latex containing the draft copolymer of the present invention, and the copolymer in the latex is extracted into an organic solvent layer.
  • the solvent layer may be separated and then mixed with water to precipitate the copolymer component.
  • the latex can also be directly powdered by spray drying.
  • the same effect can be obtained by washing the obtained powder with a solvent in the same manner as in the solidification method described above.
  • the same effect can be obtained by adding calcium chloride, magnesium chloride, magnesium sulfate, aluminum chloride, etc. to the obtained powder, preferably in a solution such as an aqueous solution.
  • the graft copolymer of the present invention is obtained by the suspension seed polymerization method, the aqueous medium force can also be separated by dehydration, washing and drying. In this case, the same effect can be obtained by diluting or washing with a solvent as in the coagulation method.
  • the graft copolymer of the present invention has a volume average particle diameter of preferably 1 ⁇ m or more. More preferably, it is recovered as a powder of 10 ⁇ m or more, further 50 ⁇ m or more, preferably 1 mm or less, more preferably 500 / zm or less, and further 200 m or less. In particular, it is preferable that the volume average particle diameter is similar to the average particle diameter of the matrix-resin powder because it is classified.
  • the powder is preferably in a state in which the copolymer of the present invention is gently agglomerated from the viewpoint that the primary particles of the graft copolymer are easily dispersed in the matrix resin.
  • the graft ratio of the graft copolymer of the present invention obtained as described above is preferably 1.001 or more, more preferably 1. in order not to impair the flame retardancy of the obtained resin composition. 01 or more, further 1.04 or more, particularly 1.08 or more, preferably 2 or less, more preferably 1.4 or less, further 1.28 or less, especially 1.15 or less.
  • the graph referred to in the present invention The rate is calculated as follows. That is, about 2 g of the graft copolymer of the present invention is precisely weighed and then immersed in about 12 g of 2-l-butanone as an extraction solvent for 12 hours.
  • Free polymer content (%) Free polymer weight Z Graft copolymer weight '(Equation 2)
  • the siloxane usage rate in the graft copolymer is determined using the following (Equation 3).
  • Siloxane usage rate (%) Raw material weight of polyorganosiloxane component only Total weight of Z-graft copolymer raw material ⁇ ⁇ ⁇ ⁇ (Equation 3)
  • the graft ratio is calculated as (Equation 4) below.
  • Graft rate (%) gel content Z ((gel content + free polymer content) X siloxane usage rate) ⁇ ⁇ ⁇ ⁇ (Formula 4)
  • a 0.2 g component soluble in 2-butanone and insoluble in methanol contained in the graft copolymer of the present invention was dissolved in 100 cm 3 of acetone, and the solution was measured for a reduced viscosity (30 ° C.) measured at 30 ° C. C, 0.2 gZl00cm 3 described as the condition of acetone solution) is preferably not less than 0. OldlZg, more preferably not less than 0.02 dl / g, in order not to impair the flame retardancy of the obtained resin composition.
  • the method for separating the component is the same as the method for obtaining the free polymer component obtained by calculating the graft ratio described above.
  • the weight average molecular weight in terms of polystyrene by GPC of the component that is soluble in 2-butanone and insoluble in methanol contained in the graft copolymer of the present invention obtained as described above is In order not to impair the flame retardancy of the obtained resin composition, it is preferably 10,000 or more, more preferably 30,000 or more, still more preferably 50,000 or more, particularly preferably 80,000 or more. It is preferably 1,000,000 or less, more preferably 450,000 or less, further preferably 200,000 or less, and particularly preferably 150,000 or less.
  • the method for separating the components is the same as the method for obtaining the free polymer component obtained by the calculation of the graft ratio described above.
  • the graft copolymer of the present invention can be blended with a matrix resin such as a thermoplastic resin, a thermosetting resin or an elastomer, and used as a resin composition.
  • a matrix resin such as a thermoplastic resin, a thermosetting resin or an elastomer
  • the graft copolymer of the present invention is characterized in that the mechanical properties such as impact resistance are improved but the flame retardancy is small, and the flame retardant is preferably adjusted by adjusting the target resin composition. It can be used as a flame retardant for the matrix resin.
  • the resin composition can be used as a flame retardant resin composition capable of imparting a high degree of flame retardancy and impact resistance to the finally obtained molded article.
  • the graft copolymer of the present invention is used in an amount of 100% by weight of the matrix resin from the viewpoint of taking a lance of mechanical properties represented by flame retardancy and impact resistance. It is preferable that 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, and particularly preferably 1 part by weight or more per part. Further, it is most preferably 20 parts by weight or less, further 10 parts by weight or less, particularly 6 parts by weight or less, and 4 parts by weight or less. If the above range is exceeded, molding may become difficult or the heat resistance may decrease, and if it is below the range, both flame retardancy and impact resistance tend to be difficult to develop.
  • thermoplastic resins that can be used as the matrix resin include polycarbonate resins such as aromatic polycarbonates and aliphatic polycarbonates, polyester resins, polyester carbonate resins, polyphenylene ether resins, Polyphenylene sulfide resin, polysulfone-based resin, polyethersulfone resin, polyarylene resin, polyamide resin such as nylon, polyetherimide resin, polyacetal resin such as polyoxymethylene, polyvinylacetal resin Oil, polyketone resin, polyether ketone resin, polyether ether ketone resin, polyaryl ketone resin, polyether-tolyl resin, liquid crystal resin, polybenzimidazole resin, polyparabanic acid resin, aromatic Al
  • Examples thereof include resin, cyanogen vinyl (ethylene propylene (EPDM))-aromatic alkellui-copolymer copolymer resin, polyolefin, and salted bull resin. These can be used alone or in a blend of two or more.
  • EPDM cyanogen vinyl (ethylene propylene (EPDM))-aromatic alkellui-copolymer copolymer resin
  • polyolefin polyolefin
  • salted bull resin examples thereof include resin, cyanogen vinyl (ethylene propylene (EPDM))-aromatic alkellui-copolymer copolymer resin, polyolefin, and salted bull resin. These can be used alone or in a blend of two or more.
  • Polyphenylene ether resin that can be used in the present invention is represented by the following chemical formula:
  • Q ⁇ Q 4 is a group in which hydrogen and hydrocarbon group forces are also independently selected, and m represents an integer of 30 or more. It is a polymer.
  • polyphenylene ether resin examples include poly (2, 6 dimethyl-1, 4 phenol) ether, poly (2-methyl 6 propyl mono 1, 4 phenol) ether, poly ( 2, 6 Jetyl 1,4 Phenyl) ether, Poly (2 Ethyl-6 Propyl-1,4 Phylene) ether, Poly (2,6 Dipropyl mono 1,4 Phylene) ether, (2, 6 Copolymers of dimethyl-1,4-phenylene) and (2,3,6 trimethyl-1,4-phenolene) ether, (2,6 jetyl-1,4-phenylene) ether and (2, Copolymer of 3,6 trimethyl-1,4 phenol) ether, copolymer of (2,6 dimethyl-1,4 phenol) ether and (2,3,6 triethyl-1,4 phenol) ether Etc.
  • poly (phenylene ether) resins are compatible with polystyrene resins at all blending ratios.
  • the degree of polymerization of the polyphenylene ether resin used in the present invention is not particularly limited, but 0.2 g is dissolved in 100 cm 3 of black mouth form, and the reduced viscosity of the solution measured at 25 ° C. Those of 0.3 to 0.7 dlZg are preferably used. If the reduced viscosity is less than 0.3 dlZg, the thermal stability tends to be poor, and if it exceeds 0.7 dl / g, the moldability tends to be impaired.
  • These poly (phenylene ether) resins are used alone or in admixture of two or more.
  • the polyphenylene ether resin can be used by mixing with other resins, and preferably used by mixing with the polystyrene resin described below.
  • a preferable mixing ratio of the polyphenylene ether resin and the other resin when used in combination with another resin can be set within a known range.
  • the salt vinyl resin that can be used in the present invention is a vinyl chloride homopolymer or other bullet unit having at least one double bond capable of copolymerizing with the salt vinyl.
  • a copolymer of a monomer and a salt-bulle, a chlorinated salt-vinyl vinyl resin, a chlorinated polyethylene resin, and the other vinyl monomer in the copolymer is preferably 50% by weight or less. Preferably it is 45 weight% or less.
  • Examples of other bur monomers having at least one double bond include ethylene, propylene, butyl acetate, (meth) acrylic acid and its ester, maleic acid and its ester, and salt vinylidene. , Bromobromide and acrylonitrile.
  • These salt-bulls can be obtained by homopolymerization or copolymerization of salt-bulls alone or salt-bulls and the other bullet monomers in the presence of a radical polymerization initiator. It is.
  • the degree of polymerization of this chlorinated sesame resin is usually 400 to 4500, especially 400 to 1500 power girls! / ⁇ .
  • Aromatic alkellui compound, methacrylic acid ester, acrylic acid ester and cyanide bur compound power which can be used in the present invention are polymerized or copolymerized with one or more selected bully monomers.
  • strong vinyl polymer or copolymer resin examples include polystyrene resin, s polystyrene resin, polymethyl methacrylate resin, polychlorostyrene resin, polybromostyrene resin, poly-a-methylstyrene resin, Styrene monoacrylonitrile copolymer resin, styrene monomethyl methacrylate copolymer resin, styrene maleic anhydride copolymer resin, styrene maleimide copolymer resin, styrene-N-phenol maleimide copolymer resin Fatty, styrene-N-phenolmaleimide-acrylonitrile copolymer resin, methylmethacrylate butyl acrylate copolymer resin, methylmethacrylate ethyl acrylate copolymer resin, styrene one attorney -Tolyl (X-methylstyrene terpolymer resin resin, gen-based component or phenol-
  • Polyamide rosins that can be used in the present invention include ethylene diamine, tetramethyl diamine, hexamethylene diamine, decamethylene diamine, dodecamethylene diamine, 2, 2, 4 and 2, 4, 4 Trimethylhexamethylenediamine, 1,3 bis (aminomethyl) cyclohexane, 1,4 bis (aminomethyl) cyclohexane, bis (p-aminocyclohexyl) methane, m-xylylenediamine Min, p Aliphatic, cycloaliphatic or aromatic diamines such as xylenediamine and aliphatic, cycloaliphatic or aromatic such as adipic acid, suberic acid, sebacic acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid polyamides derived or dicarboxylic acids, et al; epsilon - force Puroratatamu by ring-
  • the polyester-based rosin that can be used in the present invention is dicanolevonic acid or dicanolepo One obtained by polycondensation of a derivative such as an alkyl ester of an acid and a diol, or a monomer having both a carboxylic acid or a derivative such as an alkyl ester of a carboxylic acid and a hydroxyl group in one molecule Is obtained by ring-opening polymerization of a monomer having a cyclic ester structure in one molecule.
  • Examples of the dicarboxylic acid include terephthalic acid, isophthalic acid, succinic acid, adipic acid, and sebacic acid.
  • Examples of the diol include ethanediol, propanediol, butanediol, pentanediol, and hexanediol.
  • Examples of monomers having a hydroxyl group and a derivative such as rubonic acid or alkyl ester of carboxylic acid in one molecule include hydroxyalkanoic acids such as lactic acid, hydroxypropionic acid, hydroxybutyric acid, and hydroxyhexanoic acid.
  • Examples of the monomer having a cyclic ester structure in one molecule include force prolatatone.
  • Polyester terephthalates include polymethylene terephthalate, polyethylene terephthalate, polypropylene terephthalate, polytetramethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate, polyethylene naphthalate, polylactic acid, polyhydroxybutyric acid, poly (Hydroxybutyric acid-hydroxyhexanoic acid), ethylene polysuccinate, butylene polysuccinate, polybutylene adipate, poly ⁇ -strength prolatatone, poly ( ⁇ -oxyacid) and copolymers thereof, and blends thereof are exemplified.
  • polybutylene terephthalate, polyethylene terephthalate, and polylactic acid are particularly preferable.
  • Polyphenylene sulfide resin that can be used in the present invention refers to the following repeating unit: [0104]
  • R represents an alkyl group, a nitro group, a fur group, an alkoxy group, a carboxylic acid group or a metal salt thereof. The following is preferred.
  • Polysulfone-based resin is a polymer containing SO groups, aromatic and olefinic
  • polyether sulfone resin In general, the former is called polyether sulfone resin and the latter is called polysulfone resin, and these are useful in the present invention.
  • the polyetherimide resin that can be used in the present invention is a polymer having the following repeating units having an ether bond and an imide bond:
  • the polybulacetal rosin that can be used in the present invention is obtained by modifying polyvinyl alcohol with an aldehyde, and examples thereof include polybule formal and polyvinyl butyral.
  • Polyolefin-based octopus effect that can be used in the present invention includes olein composed only of a polymer from olefins represented by polyethylene, polypropylene, polymethylpentene, polybutene, a cycloolefin polymer, or a copolymer. It can be a copolymer with a compound having at least one copolymerizable double bond. Examples of the copolymerizable compound include (meth) acrylic acid and its ester, maleic acid and its ester, maleic anhydride, and butyl acetate. These copolymerizable compounds are preferably used in a proportion of 10% by weight or less.
  • the polyolefin-based resin that can be used in the present invention is a copolymer obtained by hydrogenating a copolymer of a gen-based component and another vinyl monomer, such as acrylonitrile-EPDM-styrene. This concept includes copolymer (AES) resin.
  • AES copolymer
  • the degree of polymerization of polyolefin resin should be 300-6000. preferable.
  • polyarylene resin used in the present invention examples include poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p-phenylene), poly (p
  • the polycarbonate resin used in the present invention is obtained by reacting divalent phenol with phosgene or a strong carbonate precursor.
  • Bivalent phenols are preferably bis (hydroxyaryl) alkanes such as bis (hydroxyphenol) methane, 1, 1
  • divalent phenols include 1, 1-bis (4 hydroxyphenyl) cyclohexane; 1, 1-bis (4 hydroxyphenyl) 3, 3, 5 trimethylcyclohexane; 1, 1-bis Bis (4 hydroxyphenyl) cycloalkanes such as (4 hydroxyphenol) cyclodecane, 1,1-bis (4hydroxyphenyl) phenololene; 1, 1-biscrezonole olefinolene; 1, 1 —Fluorene derivatives such as bisphenoloxy tanol fluorene, phenolbis (hydroxyphenol) methane; diphenenolebis (hydroxyphenol) methane; 1 phenol and 1, 1 bis (4-hydroxyphenol) ethane, etc.
  • divalent phenols are used alone or in combination. Of these, divalent phenol containing no halogen is preferably used.
  • Particularly preferred divalent phenols are bis (hydroxyphenol) methane, 2,2'bis (hydroxyphenol) propane, 4,4'-dihydroxydiphenyl, 1,1bis (4-hydroxyphenol).
  • the carbonate precursor examples include diaryl carbonate such as diphenyl carbonate, and dialkyl carbonate such as dimethyl carbonate and dimethyl carbonate. These good In addition to aromatic polycarbonate resin, aliphatic polycarbonate resin such as polyethylene carbonate can also be used. These polycarbonate resins do not work even if dimethylsiloxane is copolymerized in the main chain.
  • Examples of the polyketone that can be used in the present invention include an alternating copolymer of ethylene and monoxide-carbon, a an alternating copolymer of 1-year-old refin and monoxide-carbon, and the like. .
  • thermoplastic resins particularly when an aromatic polycarbonate-based resin is used, a flame retardant effect is exhibited, which is preferable.
  • the aromatic polycarbonate-based resin is a concept that contains 50% by weight or more of aromatic polycarbonate resin with respect to the total amount of aromatic polycarbonate resin and other resin, and preferably contains 70% by weight or more. Most preferably, the aromatic polycarbonate resin is substantially alone.
  • the fact that the aromatic polycarbonate resin is substantially independent means at least the aromatic polycarbonate resin.
  • Means comprising 95% by weight or more.
  • aromatic polycarbonate resin When the aromatic polycarbonate resin is in the above-mentioned ratio, good flame retardancy and impact resistance can be obtained with a good balance, and the effect tends to improve as the ratio of aromatic polycarbonate resin increases.
  • aromatic polycarbonate-based resin copolymers such as polyamide-polycarbonate resin and polyester-polycarbonate resin can also be used. It is preferable that As the other resin contained in the aromatic polycarbonate-based resin, it is possible to use a resin other than the aromatic polycarbonate resin listed in the above-mentioned thermoplastic resin.
  • a sulfur-containing organometallic salt can be included for the purpose of synergistically improving flame retardancy.
  • the sulfur-containing organometallic salt may be used alone or in combination of two or more.
  • Preferred sulfur-containing organometallic salts include sulfonic acid metal salts, sulfuric monoester metal salts, sulfonamide metal salts, and the like.
  • sulfonic acid metal salts are preferably used from the viewpoint of flame retardancy, and particularly preferably (alkyl) aromatic sulfonic acid metal salts, perfluoroalkane sulfonic acid metal salts, and aliphatic sulfonic acid metal salts.
  • the metal of the metal salt is preferably sodium, potassium, lithium, rubidium, cesium, beryllium, magnesium, calcium, strontium, norium, aluminum, etc., more preferably sodium, potassium, Alkali metals such as lithium, rubidium and cesium, and sodium or potassium are preferably used.
  • sulfonamide metal salts include sodium salt of saccharin, N— (p tolylsulfol) —p sodium salt of toluenesulfonimide, N— ( ⁇ ′ —benzylaminocarbol) Sodium sulfimide, ⁇ ⁇ ⁇ -(phenol carboxyl) -sulfurimide sodium, etc .; (alkyl) aromatic sulfonic acid metal salts include sodium dodecylbenzene sulfonate, sodium paratoluene sulfonate, di- Sodium chlorobenzenesulfonate, sodium benzenesulfonate, sodium xylenesulfonate, sodium cumene sulfonate, etc .; perfluoroalkanesulfonic acid metal salts include potassium perfluorobutanesulfonate, perfluoromethylbutanesulfonic acid Potassium, etc .; alipha-1-butane
  • the sulfur-containing organometallic salt When used, it is 0.001 part by weight or more (more preferably 0.005 part by weight or more, more preferably 0.01 part by weight based on 100 parts by weight of the aromatic polycarbonate-based resin. Parts by weight or more) is preferred. In addition, 0.5 parts by weight or less (more preferably 0.3 parts by weight or less, further 0.019 parts by weight or less, and even more preferably 0.015 parts by weight or less) is preferable. Said The presence of sulfur-containing organometallic salts may reduce the strength of the resin composition in some cases, but it is excellent in improving the flame retardancy and is preferred for balancing strength and flame retardancy. The range is the above range. If the amount is less than the above range, the effect of improving the flammability is small! / Or the amount is almost too long. Conversely, the flame retardancy may be deteriorated.
  • thermosetting resin preferably used as the matrix resin is epoxy resin, phenol resin, urea resin, melamine resin, polyimide resin, polyamideimide resin, thermosetting polyester.
  • Resin unsaturated polyester resin
  • alkyd resin silicone resin
  • urethane resin polybulle ester resin
  • diallyl polyphthalate resin bismalemidorazine resin
  • furan resin xylene resin
  • guanamine resin examples include maleic resin and dicyclopentagen resin.
  • epoxy resin that can be used in the present invention
  • those generally used for epoxy resin molding materials for semiconductor encapsulation can be used.
  • a novolac epoxy resin obtained by condensing a novolac resin obtained by condensing phenols, biphenols or naphthols with an aldehyde such as a phenol novolac epoxy resin or a cresol novolac epoxy resin.
  • 2,2 ', 6,6'-biphenyl epoxy resins such as tetramethylbiphenol diglycidyl ether, biphenol or aromatic nucleus substituted biphenols or bisphenol A, F, S, trimethylolpropane, etc.
  • diglycidyl ether of biphenol or aromatic nucleus-substituted biphenol or its condensate, novolac type epoxy resin, dicyclopentagel type epoxy resin, cycloolefin in one molecule It is preferable to contain at least 50% by weight of one or more epoxy resins selected from alicyclic epoxy resins containing an inoxide structure skeleton with respect to the total amount of thermosetting resins.
  • epoxy resins such as phenol novolac, aliphatic amines, aromatic amines, or carboxylic acid derivatives such as acid anhydrides and blocked carboxylic acids.
  • Preferred elastomers that can be used as the matrix resin include natural rubber, acrylic rubbers such as butyl acrylate, ethyl acrylate, octyl acrylate, and butadiene monoacrylonitrile copolymers.
  • Polymers such as -tolyl rubber, chloroprene rubber, butadiene rubber, isoprene rubber, isobutylene rubber, styrene butadiene rubber, methyl methacrylate-butyl acrylate block copolymer, styrene isobutylene block copolymer, styrene butadiene block copolymer, water Styrene butadiene block copolymer, ethylene propylene copolymer (EPR), hydrogenated ethylene butadiene copolymer (EPDM), polyurethane, chlorosulfonated polyethylene, silicone rubber (millable type, room temperature added) Type), butyl rubber, fluororubber, olefin thermoplastic elastomer, styrene thermoplastic elastomer, PVC thermoplastic elastomer, urethane thermoplastic elastomer, polyamide thermoplastic elastomer, polyester thermoplastic elastomer There are
  • Mixing of the polyorganosiloxane copolymer of the present invention and the matrix resin is carried out by an ordinary known kneading machine.
  • kneading machines include mixing rolls, calender rolls, Banbury mixers, Henschel mixers, ribbon blenders, kneaders, extruders, blow molding machines, and inflation molding machines.
  • an antioxidant can further be blended in the graft copolymer-containing resin composition.
  • the antioxidants There are no restrictions on the antioxidants that can be used. Phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, etc. can be used alone or in combination. Can be used.
  • phenolic antioxidant examples include 2,4-dimethyl-6- (1 methylpentadecyl) phenol, 2,6 ditert-butyl-p-cresol, 4,4'-butylidenebis (6- tert-butyl-3 methylphenol), 2,2'-methylenebis (4-methyl-6-tertbutylphenol), 2,2'-methylenebis (4-ethyl-6-tertbutylphenol), 2,6 ditert-butyl-4-ethylphenol, 1 , 1, 3 Tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, Octadecyl 3- (3,5-di-tert-butyl-4-hydroxyphenol) propionate, Te Torakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenol) propionate] methane, triethylene glycol bis [3- (3-tertbutyl 4-hydroxy-5-methylphenol) propionate], tris ( 3,5,
  • phenolic acid / antioxidants can be used alone or in combination.
  • a combination of two or more phenolic acid / antioxidants in order to improve the flame retardancy, it is preferable to use a combination of two or more phenolic acid / antioxidants.
  • phosphorus-based antioxidation agent examples include cyclic neopentanetetraylbis (2,6 di-tert-butyl-4-methylphenol) phosphite, tris (2,4 di-). tert-butylphenyl) phosphite, bis (2,6 di-tert-butyl-4-methylphenol) pentaerythritol phosphite, 2,2-methylenebis (4,6 ditert-butylphenol) octyl phosphite, etc. Can be given.
  • sulfur-based antioxidant examples include dilauryl thiodipropionate, distearinolethiodipropionate, dimyristinoretiodipropionate, ditridecinoretiodipropionate, and the like.
  • tris (3,5-ditertbutyl 4-hydroxybenzyl) isocyanurate which is the above phenolic acid / antioxidant, in combination with these to improve the flame retardancy.
  • 4'-thiobis (6-tert-butyl-3-methylphenol) is used as an antioxidant having both the properties of the phenolic antioxidant and the sulfurous antioxidant. You can also
  • the amount of the anti-oxidation agent used is preferably 0.001 part by weight with respect to 100 parts by weight of the resin composition containing the draft copolymer of the present invention in consideration of the balance of effect cost. more than, Further, it is 0.01 parts by weight or more, particularly preferably 0.015 parts by weight or more, preferably 1 part by weight or less, more preferably 0.4 parts by weight or less, even more preferably 0.1 parts by weight or less, especially 0.075 or less by weight.
  • the method of mixing the antioxidation agent with the graft copolymer-containing resin composition there is no restriction on the method of mixing the antioxidation agent with the graft copolymer-containing resin composition, and the graft copolymer of the present invention can be used with thermoplastic resin, thermosetting resin, elastomer.
  • a commonly used compounding agent that is, a dripping inhibitor, red phosphorus, bisphenol monobis (diphenyl phosphate) and triphenyl phosphate.
  • Flame retardants such as phosphate ester, condensed phosphate ester, tetrabromobisphenol mono-A, tris (2,3 dibromopropyl) isocyanurate, hexacyclohexacyclodecane, butadiene-methyl metatalylate-styrene copolymer (MBS), Impact modifiers, plasticizers, lubricants obtained by graft copolymerization of alkyl (meth) acrylate rubber or polyorganosiloxane and alkyl (meth) acrylate rubber with methyl methacrylate and styrene and acrylonitrile.
  • Melt viscosity (elasticity) modifiers such as high molecular weight polymethylmethalylate-based resin External line absorbers, pigments, fiber reinforcing agents such as glass fibers, talc 'my strength .calcium carbonate .titanium oxide' acid-zinc nano particles' layered silicate ⁇ metal particles • fillers such as carbon nanotubes, polyamide polyether block Body 'alkylene glycol ⁇ glycerin ⁇ fatty acid ester, antistatic agent, terpene rosin ⁇ Atari mouth fluidity improver such as nitrile styrene copolymer, monoglyceride' silicone oil 'mold release agent such as polyglycerin, epoxy Functional group-containing polyorganosiloxanes such as group-containing polyorganosiloxanes, (epoxy-modified) styrene butadiene styrene block copolymers and other compatibilizers, polyols, silane coupling agents, titanium
  • fluorinated resin such as poly (vinylidene fluoride), or polytetrafluoroethylene (meth)
  • the amount is preferably 2 parts by weight or less, more preferably 1 part by weight or less, even more preferably 0.6 parts by weight or less, preferably 0.1 parts by weight or more per 100 parts by weight of matrix resin.
  • the molding of the resin composition of the present invention may be a molding used for molding an ordinary thermoplastic resin composition when obtained from the polyorganosiloxane copolymer of the present invention and a thermoplastic resin. Methods such as injection molding, extrusion molding, blow molding, calendar molding, inflation molding, and rotational molding can be applied. Moreover, when it obtains from thermosetting resin, the method etc. which harden
  • a molding method such as slush molding, injection molding or hot press molding, and vulcanized as necessary to form a molded product.
  • the use of the molded product obtained from the resin composition of the present invention is not particularly limited.
  • a desktop computer a notebook computer, a liquid crystal display, a plasma display, a projector, and so on.
  • Projection TV ⁇ PDA 'Printer ⁇ ⁇ ⁇ Copier' fax '(portable) audio equipment' (portable) video equipment '(mobile) telephone' illuminator ' ⁇ game console ⁇ digital video camera ⁇ digital camera ⁇ video recorder 1 'Hard Disk Video Recorder ⁇ DVD Recorder ⁇ Office Products such as Watches ⁇ Home Appliances, Automotive Batteries, Capacitor Parts, LED Video Display Devices' Display Materials in Power Boxes ⁇ Telephone Jacks ⁇ Terminal Block Covers ⁇ Coil Bobbins, etc.
  • the obtained molded article has excellent impact resistance particularly at low temperatures and excellent flame retardancy.
  • the volume average particle size of the seed polymer, polyorganosiloxane particles, and graft copolymer was measured in the latex state.
  • the volume average particle diameter ( ⁇ m) was measured using a MICRO TRAC UPA150 manufactured by Nikkiso Co., Ltd. as a measuring device.
  • graft copolymer of the present invention was precisely weighed and then immersed in about 100 g of 2-butanone as an extraction solvent for 12 hours. The supernatant was separated from the gel by sedimentation of the gel with an ultracentrifuge. Addition of 2-butanone and ultracentrifugation were repeated twice more on the collected gel. Ultracentrifugation was performed under the condition of 30, OOOrpm'l time per time. The collected gel was dried and weighed accurately. The gel content was determined according to the following (formula 1).
  • Free polymer content (%) Free polymer weight Z Graft copolymer weight ' ⁇ (Formula 2) The following (Formula 3) is obtained based on Table 2, and the gel content, free polymer content, and siloxane use Using the rate, the graft rate was calculated as (Equation 4) below.
  • Siloxane usage rate (%) Raw material weight of polyorganosiloxane component only z Total weight of graft copolymer raw material ⁇ ⁇ ⁇ ⁇ (Equation 3)
  • Graft rate (%) gel content Z ((gel content + free polymer content) X siloxane usage rate) ⁇ ⁇ ⁇ ⁇ (Formula 4)
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • the test was conducted according to the UL94 V test and expressed in total number of seconds.
  • the colorability of the combustion test molded body was visually observed.
  • the white one is colored “No”, and the one colored brown is “Yes”.
  • a 5-neck flask equipped with a stirrer, reflux condenser, nitrogen inlet, additional monomer port, and thermometer was added to 400 parts by weight of water and 15% by weight sodium dodecylbenzenesulfonate aqueous solution (Kao Corporation, Neo After mixing 12 parts by weight (solid content) of Belex G15), the temperature was raised to 50 ° C. After the liquid temperature reached 50 ° C, nitrogen substitution was performed. Thereafter, 10 parts by weight of butyl acrylate and 3 parts by weight of tododecyl mercaptan were obtained.
  • a mixture of 90 parts by weight of butyl acrylate, 27 parts by weight of t-dodecyl mercaptan, and 0.09 part by weight (solid content) of noramentane hydride was continuously added for 3 hours. After that, post-polymerization was performed for 2 hours, and it contained a seed polymer (SD-1) with a volume average particle size of 0.03 m and a polymerization conversion rate of 90% (tododecyl mercaptan was regarded as a monomer raw material component). Latex was obtained.
  • SD-1 seed polymer with a volume average particle size of 0.03 m and a polymerization conversion rate of 90%
  • a siloxane emulsion was prepared by stirring for 5 minutes at 7500 rpm with a homomixer having the composition shown in Table 1.
  • seed polymer (SD-1) latex corresponding to the solid content shown in Table 1 was charged into a 5-neck flask equipped with a stirrer, reflux condenser, nitrogen inlet, additional monomer port, and thermometer. It is. The flask was charged with the previous siloxane emulsion.
  • a siloxane emulsion was prepared by passing it through a high-pressure homogenizer three times under a pressure of 500 bar. The emulsion was quickly charged all at once into a 5-neck flask equipped with a stirrer, reflux condenser, nitrogen inlet, additional monomer port, and thermometer. The system was reacted at 30 ° C for 6 hours with stirring.
  • SDBS sodium alkylbenzene sulfonate (average alkyl chain length is 12)
  • DHPDMS terminal dihydroxypolydimethylsiloxane with an average molecular weight of 2000
  • Example 1 to 15 Polyorganosiloxane-based graft copolymer (SG-1 to 15) To a 5-neck flask equipped with a stirrer, reflux condenser, nitrogen inlet, monomer addition port, and thermometer, Table 2 shows the latex of 240 parts by weight of ion-exchanged water (included from the latex containing organosiloxane particles) and the polyorganosiloxane particles (S-1 to 3) obtained in Production Examples 2 to 4. Amount (However, Table 2 is equivalent to solid content) The temperature was raised to the temperature shown in Table 2 under a nitrogen stream. One hour after reaching the temperature shown in Table 2, sodium formaldehyde sulfoxylate (SFS) O.
  • SFS sodium formaldehyde sulfoxylate
  • a mixture of graft monomers (MG-1) having the composition shown in Table 2 was added all at once, and stirring was continued for 30 minutes.
  • graft monomers (MG-2) having the composition shown in Table 2 was added by 20 parts by weight. Drops were added at a time acceleration. Further, when there was an additional component, 1 hour after the completion of the addition, a mixture of graft monomers (MG-3) having the composition shown in Table 2 was added dropwise at a follow-up calorie rate of 20 parts by weight Z hours.
  • Ion-exchanged water was added to the obtained latex to a solid content concentration of 15 wt%, and then 4 wt parts (solid content) of 2.5 wt% salty calcium carbonate aqueous solution was added to obtain a coagulated slurry. . Furthermore, water was added to obtain a solid concentration of 12% by weight. The obtained coagulated slurry was heated to 95 ° C and held at 95 ° C for 2 minutes, then cooled to 50 ° C, dehydrated, washed with 15 times the amount of oil, dried and then polyorgano A powder of siloxane-based graft copolymer was obtained. Table 2 shows the results of analysis of the graft ratio, reduced viscosity, and weight average molecular weight.
  • A1MA Alinole methacrylate
  • the obtained blend was melt kneaded at 260 ° C. with a twin-screw extruder (TEX44SS manufactured by Nippon Steel Works, Ltd.) to produce pellets.
  • TEX44SS twin-screw extruder
  • the FAS100B injection molding machine manufactured by FANUC CORPORATION (FA NUC) set to a cylinder temperature of 280 ° C.
  • 1Z20 inch flame resistance evaluation test piece and 1 Z8 inch impact resistance evaluation test A piece was made.
  • the obtained test piece was used for evaluation according to the evaluation method.
  • Table 4 shows the results of impact resistance (0 ° C) and flame retardancy of the compacts.
  • SDBS Sodium alkylbenzenesulfonate (average chain length of alkyl group is 12)
  • Polyorganosiloxane graft copolymers shown in Table 5 are commercially available impact modifiers.
  • MBS powder (trade name: Kane Ace B-564), a commercially available acrylic impact resistance improver (trade name: Kane Ace M-580) 0 or 5 parts by weight
  • Polytetrafluoroethylene (Daikin Kogyo Co., Ltd., trade name: Polyflon FA—50 0) 0.5 part by weight
  • commercially available pigment Toago Materials' Technology Co., Ltd., product number : 42—120A) 1 part by weight
  • phenolic acid inhibitor (Asahi Denki Kogyo Co., Ltd., trade name: AO-60), phosphorus acid inhibitor (Asahi Denki Kogyo Co., Ltd.) , Product name: HP—10) and Polycarbonate carbonate (made by Idemitsu Kosan Co., Ltd., product name: Toughlon A2200) 80 parts by weight
  • AB S resin Japanese A
  • the obtained blend was melt-kneaded at 250 ° C with a twin-screw extruder (TEX44SS manufactured by Nippon Steel Works, Ltd.) to produce pellets.
  • a FAS100B injection molding machine manufactured by FANUC Co., Ltd. set to a cylinder temperature of 300 ° C, a 1Z8 inch flame resistance evaluation test piece and a 1Z4 inch impact resistance evaluation test A piece was made. It evaluated according to the said evaluation method using the obtained test piece.
  • Table 5 shows the results of visual observation of the impact resistance (30, 23 ° C) and flame retardancy of the molded product and the presence or absence of coloring due to burning of the test piece.
  • Example 28 instead of sodium alkylbenzenesulfonate in Example 28, sodium benzenesulfonate (manufactured by Tokyo Chemical Industry Co., Ltd., reagent grade), sodium P-toluenesulfonate (manufactured by Tokyo Chemical Industry Co., Ltd., reagent grade), sodium xylenesulfonate (Tika shares Evaluation was carried out in the same manner as in Example 28 except that the amount shown in Table 7 was used, which was manufactured by a formula company, trade name: Tikatotutus N1140) and sodium cumene sulfonate (trade name: Tikatotus N5040). Table 7 shows the results of evaluating the impact resistance and flame retardancy of the compacts.
  • SDBS Sodium alkylbenzene sulfonate (average chain length of alkynole group is 12)
  • the copolymer of the present invention By blending the copolymer of the present invention with a resin such as a thermoplastic resin, it is non-halogen 'and non-phosphorus, and does not decrease or improve the flame retardancy, at a low temperature or the like. It is possible to provide a resin composition having excellent impact resistance.
  • a resin such as a thermoplastic resin

Abstract

 新規なグラフト共重合体ならびに難燃性・耐衝撃性のバランスに優れた樹脂組成物を提供する。ポリオルガノシロキサン(A)部位、分子内に2以上のラジカル重合性基を有する窒素原子含有多官能性単量体(B)由来の単位を少なくとも有する重合体(C)部位、およびエチレン性不飽和単量体(D)由来のガラス転移温度が40°C以上である重合体(E)部位を含んで構成されるポリオルガノシロキサン系グラフト共重合体、並びに該グラフト共重合体を含有する樹脂組成物。

Description

明 細 書
グラフト共重合体およびその製造方法、並びに該グラフト共重合体含有 樹脂組成物
技術分野
[0001] 本発明はポリオルガノシロキサン系グラフト共重合体に関する。詳しくは、ポリオル ガノシロキサン (A)部位、分子内に 2以上のラジカル重合性基を有する窒素原子含 有多官能性単量体 (B)由来の単位を少なくとも有する重合体 (C)部位、およびェチ レン性不飽和単量体 (D)由来のガラス転移温度が 40°C以上である重合体 (E)部位 とを含んで構成されるポリオルガノシロキサン系グラフト共重合体に関する。また本発 明は、前記グラフト共重合体を含むグラフト共重合体含有榭脂組成物に関する。 背景技術
[0002] 難燃性でかつ機械特性に優れた榭脂組成物は電気 ·電子関連の市場をはじめとし て大きな需要があり、高い性能が求められている。
[0003] 難燃性の付与に関しては、近年、非ハロゲン系難燃剤としてリン系難燃剤が多く用 いられている。し力しリン系難燃剤は、毒性問題の面ば力りでなぐ最終成形体の耐 熱性'耐衝撃性の低下など、改良すべき点が多く存在するため、リン系難燃剤の使 用量の低減、ひいては非ハロゲン非リン系難燃剤への転換が求められている。非ハ ロゲン非リン系難燃剤として金属化合物の使用が提案されているが、これらも充分な 難燃性を得るために必要な量を用いると機械的特性の低下を引き起こす場合などが あり、使用するにしてもその量を低減する必要があった。
[0004] 機械特性の付与に関しては、ポリオルガノシロキサン、ポリアルキル (メタ)アタリレー ト (ガラス転移温度が低いもの)、ポリブタジエン、ポリイソプチレンなどの低ガラス転移 温度を有する重合体を熱可塑性榭脂、熱硬化性榭脂、エラストマ一などのマトリック スとなる榭脂に配合して分散させ、それらの耐衝撃性'引張特性といった特性を改良 する方法が広く用いられている。しかしポリオルガノシロキサンを除く重合体はその添 加により得られる榭脂組成物の難燃性を低下させる問題を有しているので、難燃性と 機械的特性は両立させることが困難である場合が多い。難燃剤による機械的特性低 下をカバーする目的で前記低ガラス転移温度を有する重合体を配合すると難燃性が 低下し、そのため難燃剤を増量すると機械的特性が低下するといつた問題に直面す ることが多くあった。
[0005] 一方でポリオルガノシロキサンは、その優れた低温特性を活かすことで、特に前記 マトリックス榭脂に配合しての低温機械特性改良に効果を奏する事が知られている。 ポリオルガノシロキサンはそれ自体可燃物ではある力 ポリアルキル (メタ)アタリレート (ガラス転移温度が低いもの)、ポリブタジエンなど他の低ガラス転移温度を有する重 合体と比較して燃焼熱が少なく、結果的にポリオルガノシロキサンを配合して得られ た榭脂組成物の成形体は難燃性の低下が他の重合体を配合する場合に比べて少 なくて済む。また、ポリオルガノシロキサンの特異な反応を活かすことで逆に難燃性そ のものを同時に付与できる場合もある。
[0006] し力しながら、ポリオルガノシロキサンは一般的な榭脂成分との相溶性に乏しぐ前 記マトリックス榭脂に配合,混練し成形体を得ても充分な程度の微細化や均一化が 困難なため、多く用いると成形体の外観が悪ィ匕したり層状剥離して機械的強度が低 下するなどの問題を生じることが多力つた。そのため前記マトリックス榭脂との相溶性 を有する榭脂成分をポリオルガノシロキサン成分と化学的に結合させ、ブロック共重 合体ゃグラフト共重合体を形成させて用いることにより、前記課題を克服する試みが 多くなされて 、る。特にポリオルガノシロキサン成分に前記榭脂成分をグラフト結合し たグラフト共重合体は、マトリックス榭脂中でのポリオルガノシロキサンの分散状態を 制御できるなどと 、う点で有利である。
[0007] ポリオルガノシロキサンそのものと前記榭脂成分を形成するビュル単量体の反応性 が乏しいために、ラジカル重合反応性を有するいわゆるグラフト交叉剤単位で変性さ れたポリオルガノシロキサンを用いて効率よくグラフト共重合体を形成する方法が公 知である力 依然、一般に知られるグラフト共重合体においては、前記榭脂成分は必 ずしも効率よくポリオルガノシロキサン成分にグラフト結合しているわけではなぐ一部 は遊離した状態で存在し、その割合が大き 、場合にはポリオルガノシロキサン成分の 成形体中での分散状態が悪化し、物性が充分に発現しないなど、課題が残されてい る。 [0008] このような課題を克服するために、前記榭脂成分を形成するビニル単量体との反応 性が高!ヽメタクリロイルォキシ基含有シラン単位を選択することで、得られる変性ポリ オルガノシロキサン成分にビュル単量体をグラフト重合し、グラフト効率の高 、グラフ ト共重合体を得、最終成形体の耐衝撃性など物性値を改良する方法が開示されて いる(例えば特開昭 60— 252613号公報参照)。このグラフト共重合体は耐衝撃性 の改良には有効だが、同時に難燃性を付与または維持しょうとする場合にはさらなる 改良が必要な場合があった。
[0009] 一方、特定のグラフト交叉剤に限定せず、その選択の幅を広く保ったままグラフト効 率を向上させて難燃性 '耐衝撃性などを改良するために、変性若しくは未変性のポリ オルガノシロキサン粒子存在下にァリルメタタリレートに代表される多官能性単量体を 主成分とする単量体を重合し、さらにビュル単量体を重合して得られるグラフト共重 合体が開示されて!、る(例えば特開 2003 - 238639号公報参照)。
[0010] 力かるグラフト共重合体ではポリオルガノシロキサン粒子へのグラフト効率が高 ヽた めに、少ないビュル単量体使用量であっても、より多くのポリオルガノシロキサン粒子 をその分散を確保しながらマトリックス榭脂中に導入できるため、得られたグラフト共 重合体を熱可塑性榭脂、特にポリカーボネート系榭脂と配合した場合には、耐衝撃 性のみならず難燃性も良好に発現することが示されている。し力しながら、依然耐衝 撃性と難燃性の高度な両立を求める今日の市場要求を満たすにはさらなる改良が望 まれている。
発明の開示
[0011] 本発明は、低温での耐衝撃性に優れた榭脂組成物、ハロゲン 'リン含有量が低減さ れた、さらには非ハロゲン '非リン系であって難燃性 ·耐衝撃性のバランスに優れた榭 脂組成物を提供することを最終目標とし、またカゝかる榭脂組成物を与えることのでき る改良剤としてのグラフト共重合体を提供することである。
[0012] 本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、特定のグラフト 共重合体が難燃性を損なわせることなく耐衝撃性を改良する効果に優れ、または難 燃性も同時に改良すること、かつ該グラフト共重合体を熱可塑性榭脂などの榭脂に 配合することにより難燃性を維持もしくは改良しながら耐衝撃性にも優れた榭脂組成 物を得ることができることを見いだし、本発明を完成するに至った。
[0013] すなわち本発明は、ポリオルガノシロキサン (A)部位、分子内に 2以上のラジカル 重合性基を有する窒素原子含有多官能性単量体 (B)由来の単位を少なくとも有す る重合体 (C)部位、およびエチレン性不飽和単量体 (D)由来のガラス転移温度が 4 0°C以上である重合体 (E)部位を含んで構成されるポリオルガノシロキサン系グラフト 共重合体に関する。
[0014] 好ま 、実施態様は、ポリオルガノシロキサン (A)部位の含有量が、グラフト共重合 体を基準として 65重量%以上であることを特徴とする、前記のグラフト共重合体に関 する。
[0015] 好ま 、実施態様は、窒素原子含有単量体 (B)が、シァヌル酸誘導体および Zま たはイソシァヌル酸誘導体であることを特徴とする、前記 、ずれかに記載のグラフト共 重合体に関する。
[0016] 好ましい実施態様は、ポリオルガノシロキサン (A)の存在下に、窒素原子含有多官 能性単量体 (B)を含む単量体を 1段以上重合することにより得られることを特徴とす る、前記いずれかに記載のグラフト共重合体に関する。
[0017] 好ましい実施態様は、ポリオルガノシロキサン (A)の存在下に、窒素原子含有多官 能性単量体 (B)を含む単量体を 1段以上重合し、さらにエチレン性不飽和単量体 (D )を 1段以上重合することにより得られることを特徴とする、前記いずれかに記載のグ ラフト共重合体に関する。
[0018] 好ましい実施態様は、グラフト率が 1. 001〜1. 280であることを特徴とする、前記 いずれかに記載のグラフト共重合体に関する。
[0019] 好ましい実施態様は、グラフト共重合体に含まれており、 2—ブタノンに可溶かつメ タノールに不溶である成分を、 30°C、 0. 2gZlOOcm3アセトン溶液の条件で測定し た還元粘度が 0. 01〜0. 8dlZgであることを特徴とする、前記いずれかに記載のグ ラフト共重合体に関する。
[0020] 好ましい実施態様は、グラフト共重合体に含まれており、 2—ブタノンに可溶かつメ タノールに不溶である成分の GPCを用いて求めた重量平均分子量が 10, 000以上 、 1, 000, 000以下であることを特徴とする、前記いずれかに記載のグラフト共重合 体に関する。
[0021] 本発明は、前記いずれかに記載のグラフト共重合体を含むラテックスを塩凝固する 工程を伴うことを特徴とする、グラフト共重合体の製造方法に関する。
[0022] 好ましい実施態様は、グラフト共重合体を含むラテックスを塩凝固するよりも後のェ 程で、さらにグラフト共重合体を洗浄する工程を伴うことを特徴とする、前記のグラフト 共重合体の製造方法に関する。
[0023] 好ましい実施態様は、グラフト共重合体を含むラテックスを塩凝固するよりも後のェ 程で、さらにグラフト共重合体を含む分散液を稀釈する工程を伴うことを特徴とする、 前記のグラフト共重合体の製造方法に関する。
[0024] 本発明は、前記 、ずれかに記載のグラフト共重合体を含むラテックスを噴霧乾燥し た後に、さらにグラフト共重合体を洗浄する工程および Zまたは 2価以上の金属の塩 を添加する工程を伴うことを特徴とする、グラフト共重合体の製造方法に関する。
[0025] 本発明は、前記いずれかに記載のグラフト共重合体、並びに熱可塑性榭脂、熱硬 化性榭脂及びエラストマ一力 なる群より選択される少なくとも 1種を含有することを 特徴とする、グラフト共重合体含有榭脂組成物に関する。
[0026] 好ま ヽ実施態様は、熱可塑性榭脂が、ポリカーボネート榭脂、ポリエステル榭脂、 ポリエステルカーボネート榭脂、ポリフエ-レンエーテル榭脂、ポリフエ-レンスルフィ ド榭脂、ポリスルフォン榭脂、ポリエーテルスルフォン榭脂、ポリアリーレン榭脂、ポリ アミド榭脂、ポリエーテルイミド榭脂、ポリアセタール榭脂、ポリビニルァセタール榭脂 、ポリケトン樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリ 一ルケトン榭脂、ポリエーテル-トリル榭脂、液晶榭脂、ポリべンズイミダゾール榭脂、 ポリパラバン酸榭脂、芳香族ァルケ-ル化合物、メタクリル酸エステル、アクリル酸ェ ステルおよびシアンィ匕ビ-ルイ匕合物力 なる群より選ばれる 1種以上のビュル単量体 を重合若しくは共重合させて得られるビニル系重合体若しくは共重合体榭脂、ジェン -芳香族アルケニル化合物共重合体榭脂、シアンィ匕ビュル—ジェン—芳香族アル ケニルイ匕合物共重合体榭脂、芳香族ァルケ-ルイ匕合物 ジェン シアンィ匕ビュル —N—フエ-ルマレイミド共重合体榭脂、シアン化ビュル (エチレン ジェン プロ ピレン (EPDM) ) 芳香族ァルケ-ルイ匕合物共重合体榭脂、ポリオレフイン、塩ィ匕ビ -ル榭脂、塩素化塩ィ匕ビニル榭脂から選択される少なくとも 1種であることを特徴とす る、前記のグラフト共重合体含有榭脂組成物に関する。
[0027] 好ま ヽ実施態様は、熱硬化性榭脂がフエノール榭脂、エポキシ榭脂、尿素樹脂、 メラミン榭脂、ポリイミド榭脂、ポリアミドイミド榭脂、熱硬化性ポリエステル榭脂、アルキ ド榭脂、シリコーン榭脂、ウレタン榭脂、ポリビュルエステル榭脂、ポリフタル酸ジァリ ル榭脂、ビスマレイミドートリアジン榭脂、フラン榭脂、キシレン榭脂、グアナミン榭脂、 マレイン榭脂、ジシクロペンタジェン榭脂から選択される少なくとも 1種であることを特 徴とする、前記のグラフト共重合体含有榭脂組成物に関する。
[0028] 好ましい実施態様は、エラストマ一が天然ゴム、合成ゴム力も選択される少なくとも 1 種であることを特徴とする、前記のグラフト共重合体含有榭脂組成物に関する。
[0029] 好ま 、実施態様は、芳香族ポリカーボネートを含むことを特徴とする、前記のダラ フト共重合体含有榭脂組成物に関する。
[0030] 好ましい実施態様は、さらに硫黄含有有機金属塩を含むことを特徴とする、前記の グラフト共重合体含有榭脂組成物に関する。
[0031] 好ましい実施態様は、さらに酸化防止剤を含むことを特徴とする、前記いずれかに 記載のグラフト共重合体含有榭脂組成物に関する。
発明を実施するための最良の形態
[0032] 以下に、本発明の好ましい実施の形態を説明する力 本発明は以下の説明に限定 されるものではない。
[0033] 本発明のポリオルガノシロキサン系グラフト共重合体は、ポリオルガノシロキサン (A )部位、分子内に 2以上のラジカル重合性基を有する窒素原子含有多官能性単量体 (B)由来の単位を少なくとも有する重合体 (C)部位、およびマトリックスとなる榭脂成 分との相溶性を確保するために、エチレン性不飽和単量体 (D)由来のガラス転移温 度が 40°C以上である重合体 (E)部位を含んで構成されるポリオルガノシロキサン系 グラフト共重合体である。力かる共重合体としては、例えば、ポリオルガノシロキサン( A)存在下に、前記窒素原子含有多官能性単量体 (B)を含む単量体を 1段以上重 合した後に、さらにエチレン性不飽和単量体 (D)を 1段以上重合することによりグラフ ト共重合体として容易に本発明のポリオルガノシロキサン系グラフト共重合体を得るこ とがでさる。
[0034] 本発明に用いるポリオルガノシロキサン (A)、分子内に 2以上のラジカル重合性基 を有する窒素原子含有多官能性単量体 (B)由来の単位を少なくとも有する重合体( C)、ならびにエチレン性不飽和単量体 (D)由来の重合体 (E)の具体例を次に記述 する。
[0035] [ポリオルガノシロキサン (A) ]
本発明に用いるポリオルガノシロキサン (A)は難燃性を低下させることなぐ特に低 温での耐衝撃性を向上させるための成分であり、場合によってはそれ自身を含む榭 脂組成物の難燃性を向上させる成分である。前記ポリオルガノシロキサン (A)には、 ポリジメチルシロキサン、ポリメチルフエニルシロキサン、ポリジメチルシロキサンージ フエ-ルシロキサン共重合体などのポリオルガノシロキサン、側鎖アルキル基の一部 が水素原子に置換されたポリオルガノノヽイドロジェンシロキサンなどを用いることがで きる。なかでもポリジメチルシロキサン、ポリメチルフエニルシロキサン、ポリジメチルシ ロキサンージフエ-ルシロキサン共重合体が難燃性を付与する上では好ましぐさら にポリジメチルシロキサンが経済的にも容易に入手できるので最も好ま 、。
[0036] ポリメチルフエ-ルシロキサン、ポリジメチルシロキサンージフエ-ルシロキサン共重 合体を用いた場合には、低温特性をさらに改良できる場合があり、また、後述するェ チレン性不飽和単量体 (D)とともに本発明の共重合体の屈折率をマトリックス榭脂の それに近づけるよう設定すれば、得られる榭脂組成物に透明性を付与することができ る場合がある。前記ポリオルガノシロキサン (A)は、耐衝撃性'難燃性を良好に発現 できるために、グラフト交叉基を有することが好ましぐ少なくとも 1分子あたり複数個 のグラフト交叉基を側鎖および Zまたは分子鎖末端に有するのがより好ましぐ中で も側鎖に有することが特に好ましい。
[0037] 前記ポリオルガノシロキサン (A)を得る方法に特に限定はなぐ溶液重合法、懸濁 重合法、乳化重合法などが用いられる。
[0038] 例えば、環状、直鎖状または分岐状のオルガノシロキサン、好ましくは環状オルガノ シロキサンを、酸、アルカリ、塩、フッ素化合物などの触媒を用いて重合する方法をあ げることができる。前記重合に用いるオルガノシロキサンの重量平均分子量 (Mw)は 、好まし <は 20, 000以下、より好まし <は 10, 000以下、さらに好まし <は 5, 000以 下、特に好ましくは 2, 500以下である。前記方法において、前記オルガノシロキサン とともにグラフト交叉基を有するシランおよび Zまたはグラフト交叉基を有する前記同 様の重量平均分子量 (Mw)の環状、直鎖状、または分岐状オルガノシロキサンを用 いる方法を、より好ましくあげることができる。または、前記方法において前記オルガノ シロキサンを用いずにグラフト交叉基を有するシランおよび Zまたはグラフト交叉基を 有する前記同様の重量平均分子量 (Mw)の環状、直鎖状、または分岐状オルガノシ ロキサンを用いる方法を、より好ましくあげることができる。
[0039] あるいは、溶液中、スラリー中、もしくはェマルジヨン中において重量平均分子量( Mw)力 子ましくは 20, 000以上、より好ましくは 50, 000以上、さらには 100, 000以 上のポリオルガノシロキサンと好ましくはグラフト交叉基を有するシランおよび Zまた はグラフト交叉基を有する環状、直鎖状または分岐状オルガノシロキサンとを前述と 同様の触媒などの存在下平衡ィ匕する方法をあげることができる。または、溶液中、ス ラリー中、もしくはェマルジヨン中において重量平均分子量(Mw)が好ましくは 20, 0 00以上のポリオルガノシロキサンと、同じく重量平均分子量 (Mw)が好ましくは 20, 0 00以上のグラフト交叉基を有するポリオルガノシロキサンとを前述のごとき触媒などの 存在下で平衡ィ匕する方法などもあげることができる。
[0040] 最終成形体の耐衝撃性を良好に発現させるために、前記ポリオルガノシロキサン( A)は粒子であることが好ましい。かかる粒子は、前述のごときオルガノシロキサンから 乳化重合法により製造することができる。乳化重合法に代わって、ェマルジヨン状態 のポリオルガノシロキサンを前述のごとく変性する方法、溶液重合法などにより得た変 性若しくは非変性のポリオルガノシロキサン (A)を高圧ホモジナイザーなどを用いて 機械的に強制乳化する方法などによりポリオルガノシロキサン (A)のェマルジヨンを 得ることちでさる。
[0041] ポリオルガノシロキサン (A)の粒子は、詳しくは、特開 2000— 226420号公報、特 開 2000— 834392号公報、米国特許第 2891920号明細書、同第 3294725号明 細書などに記載の公知の乳化重合法により得ることができる。
[0042] すなわち、 1, 3, 5, 7—オタタメチルシクロテトラシロキサン (D4)に代表される環状 シロキサン、および Zまたはジメチルジメトキシシランなどの加水分解性基を有する 2 官能シラン、必要に応じてメチルトリエトキシシラン、テトラプロピルォキシシランなどの 3官能以上のアルコキシシラン、メチルオルソシリケートなどの 3官能以上のシランの 縮合体、並びに必要に応じてメルカプトプロピルジメトキシメチルシラン、アタリロイル ォキシプロピルジメトキシメチルシラン、メタクリロイルォキシプロピルジメトキシメチル シラン、ビニルジメトキシメチルシラン、ビニルフエ二ルジメトキシメチルシランなどのグ ラフト交叉剤を用いてポリオルガノシロキサン (A)の粒子を得ることができる。好ま Uヽ グラフト交叉剤の使用量は、最終成形体において良好な耐衝撃性を得るために、得 られるポリオルガノシロキサン中のシロキサン単位に換算して 0. O3mol%以上、より 好ましくは 0. 06mol%以上、さらには 0. 15mol%以上、特に好ましくは 0. 5mol% 以上であり、 5mol%以下、より好ましくは 3mol%以下、さらには lmol%以下である。
[0043] その際の条件としては、好ましくは水、界面活性剤とともにホモジナイザーなどを用 いて乳化し、必要に応じて高圧下機械的に乳化分散させ、その後酸を加えて pHを 4 以下、好ましくは 3以下、より好ましくは 2以下、または塩基をカ卩えて pHを 8以上、好ま しくは 9. 5以上、より好ましくは 11以上の条件下におくことにより、前記ポリオルガノシ ロキサン (A)の粒子を得ることができる。重合の際の温度は 0°C以上、好ましくは 30 °C以上、より好ましくは 50°C以上、さらには 60°C以上、 150°C以下、好ましくは 120 °C以下、より好ましくは 95°C以下が適用でき、好ましくは窒素などの不活性ガス雰囲 気下もしくは真空脱気した状態下で、加水分解 '縮合反応させることにより得ることが できる。
[0044] ここで、前記環状シロキサンおよび Zまたはシラン等を重合するに際しては、以下 に記載されているシード重合法を適用することが好ましい。例えば、特開昭 63— 202 630号公報、特開昭 63— 202631号公報、特開平 4— 258636号公報に開示され る有機重合体をシード粒子として用いる方法、特開昭 60— 088040号公報に開示さ れるポリオルガノシロキサンラテックスをシードラテックスとして用いる方法、さらに好ま しくは WO03Z068835号公報で開示されるごとく環状シロキサンに対する膨潤性を 有する有機重合体をシード粒子として用いる方法、またはラテックス粒子径が 20nm 以下、好ましくは 15nm以下、より好ましくは lOnm以下の重合体をシード粒子として 用いる方法を採用することができる。
[0045] 前記方法により得られたポリオルガノシロキサン (A)のェマルジヨンには、揮発性の 低分子量環状シロキサンが含有されて 、る。この揮発性の低分子量環状シロキサン を除去する目的で、米国特許第 4600436号明細書、特開 2002— 249582号公報 に開示されるごとぐ蒸気ストリツビングを適用したり、特開 2002— 121284号公報に 開示されている珪藻土などの吸着剤を添加して揮発性の低分子量環状シロキサンを 吸着させた後に、得られたポリオルガノシロキサン (A)を濾別する方法を適用したり することができる。
[0046] ェマルジヨン状態にある前記ポリオルガノシロキサン (A)を得る別の方法として、特 開平 11— 222554号公報、特開 2001— 288269号公報などに開示された方法を 用いることができる。例えば、好ましくは揮発性の低分子量シロキサンの含有量が 5 重量%以下、より好ましくは 1重量%以下で、重量平均分子量 (Mw)が好ましくは 20 , 000以下、より好ましくは 10, 000以下、さらに好ましくは 5, 000以下、さらには 2, 500以下の、末端に加水分解性基を有し、必要に応じてメルカプトプロピル基、メタク リロイルォキシプロピル基、アタリロイルォキシプロピル基、ビュル基、ビュルフエ-ル 基、ァリル基などのラジカル反応性基で部分置換された直鎖または分岐鎖状の変性 若しくは非変性の(ポリ)オルガノシロキサンを用いることができる。加水分解性基とし てはヒドロキシル基、アミノ基、アルコキシル基、ァシロキシ基、ケトォキシム基、ァルケ ノキシ基、アミド基、またはアミノキシ基などをあげることができる。
[0047] 前記の変性若しくは非変性の(ポリ)オルガノシロキサンは、必要に応じて前記した ラジカル反応性基を有するシランなどのグラフト交叉剤とともに用いて、水、界面活性 剤などを加え、例えば高圧ホモジナイザーゃコロイダルミルなどにより所望の粒子径 になるよう機械的に強制乳化することができる。前記の変性若しくは非変性の (ポリ) オルガノシロキサンの重合温度としては 0°C以上、好ましくは 100°C以下、より好ましく は 50°C以下、さらには 30°C以下、 pHは好ましくは前記同様に酸あるいは塩基など を用いて同様の範囲にする方法を適用してポリオルガノシロキサン (A)を得ることが できる。なお、原料として揮発性の低分子量シロキサン含有量が少ない(ポリ)オルガ ノシロキサンを用いた場合には、重合条件を選択することにより、揮発性の低分子量 シロキサンが低減された前記ポリオルガノシロキサン (A)を得ることができる。
[0048] 前記環状シロキサンおよび Zまたはシラン等の重合、または変性若しくは非変性の
(ポリ)オルガノシロキサンの強制乳化重合に際して酸性重合条件を用いる場合には 、界面活性剤としては酸性下でも界面活性能が発揮される界面活性剤を用いること が好ましい。その様な界面活性剤としては、例えば、アルキル硫酸エステルの金属塩 、アルキルスルフォン酸の金属塩、アルキルァリールスルホン酸の金属塩などのァニ オン系界面活性剤をあげることができる。
[0049] 前記金属塩としては、好ましくはアルカリ金属塩、特にナトリウム塩、カリウム塩が選 ばれる。中でもナトリウム塩が好ましぐさらにはドデシルベンゼンスルホン酸ナトリウム が最も好ましい。また、ポリオキシエチレンドデシルエーテルに代表されるポリオキシ アルキレンアルキルエーテル、ポリオキシエチレンノ-ルフエ-ルエーテルに代表さ れるポリオキシアルキレンアルキルァリールエーテル、ポリオキシエチレンステアリン 酸エステルに代表されるポリオキシアルキレン高級脂肪酸エステル、ソルビタンモノラ ゥリン酸エステルなどのノ-オン系界面活性剤を使用することができる。あるいはそれ らと前記ァニオン系界面活性剤とを併用することもできる。
[0050] 酸性条件にするための酸としては、硫酸、塩酸、硝酸などの無機酸や、ドデシルべ ンゼンスルホン酸、ドデシル硫酸、トリフルォロ酢酸などの有機酸を用いることができ る。ドデシルベンゼンスルホン酸に代表されるアルキルァリールスルホン酸は、酸成 分としてのみでなく界面活性剤としての機能も有し、場合によってはそれのみの使用 ですむ場合があり、好ましく用いられる。し力しこれに限定されるものではなぐこれら 酸、界面活性剤はそれぞれ単一、複数成分の組み合わせ、いずれであっても良い。
[0051] 酸性条件下で重合が終了した後には、必要に応じてラテックスを室温付近で数時 間以上熟成してポリオルガノシロキサンを高分子量ィ匕した後に、水酸化ナトリウム、水 酸化カリウム、炭酸ナトリウム、アンモニアなどの無機塩基、アルキルァミン、アルキル アンモ-ゥムヒドロキサイドなどの有機塩基を添カ卩して系を pHが 5〜8になるように中 和することによりシロキサンの重合を停止することができる。
[0052] 同様に塩基性重合条件を用いる場合には、界面活性剤としては塩基性でも界面活 性能が発揮される界面活性剤を用いることが好ま 、。その様な界面活性剤としては 、例えば、ドデシルトリメチルアンモ -ゥムブロマイド、ステアリルトリメチルアンモ-ゥ ムブロマイドなどのアルキルトリメチルアンモ -ゥム塩、ジドデシルジメチルアンモ-ゥ ムブロマイドなどのジアルキルジメチルアンモ -ゥム塩、ステアリルジメチルベンジル アンモ-ゥムクロライドなどのアルキルァラルキルアンモ-ゥム塩などのカチオン系界 面活性剤をあげることができる。また、前述のごときノ-オン系界面活性剤を用いるこ と、もしくは併用することもできる。塩基性条件にするための塩基としては、水酸化リチ ゥム、水酸ィ匕カリウム、水酸化ナトリウム、水酸化セシウムなどの無機塩基、アルキル アンモ-ゥムヒドロキサイドなどの有機塩基を用いることができる。
[0053] 特開 2001— 106787号公報に記載のセチルトリメチルアンモ-ゥムヒドロキサイド などのテトラオルガノアンモ-ゥムヒドロキサイドは、カチオン系界面活性剤と塩基の 両方の機能を有し、場合によってはそれのみの使用で済む場合があり、好ましく用い られる。し力しこれに限定するものではなぐこれら塩基、界面活性剤はそれぞれ単 一、複数成分の組み合わせ、いずれであっても良い。塩基性条件下で重合が終了し た後は、必要に応じて熟成し、硫酸などの無機酸、または酢酸、ドデシルベンゼンス ルホン酸などの有機酸などで系を前述同様に中和することによりシロキサンの重合を 停止することができる。
[0054] ポリオルガノシロキサン (A)の粒子の体積平均粒子径は 0. 008〜0. 6 μ mが好ま しく、 0. 01〜0. 35 m力さらに好ましい。体積平均粒子径カ 0. 008 m未満のも のを安定的に得ることは難しい場合が多ぐ 0. 6 mを越えると最終成形体の難燃性 ゃ耐衝撃性が悪くなる恐れがある。また体積平均粒子径は、例えば、 日機装株式会 社製の MICROTRAC UPA150を用いて測定することができる。
[0055] 本発明に用いるポリオルガノシロキサン (A)の重量平均分子量は好ましくは 100, 0 00以上、より好まし <は 150, 000以上、好まし <は 1, 000, 000以下、より好まし <は 700, 000以下、さら〖こは 300, 000以下である。重量平均分子量が低すぎる場合は 、難燃性ゃ耐衝撃性が悪くなる恐れがある。また、重量平均分子量が高すぎる場合 は生産性が低下する場合がある。前記重量平均分子量はゲル ·パーミエーシヨン'ク 口マトグラフィ (GPC)分析による標準ポリスチレン換算値を用いることができる。
[0056] 本発明のポリオルガノシロキサン系グラフト共重合体 (該共重合体全体を 100重量 %とする)において、ポリオルガノシロキサン (A)部位は得られる榭脂組成物の難燃 性を損なわないために 65重量%以上含有していることが好ましぐさらには 75重量 %以上、特には 82. 5重量%以上含有することが好ましい。上限は、マトリックス榭脂 中でのポリオルガノシロキサン (A)成分の分散状態を良好にするために好ましくは 9 9重量%であり、より好ましくは 98重量%、さらには 95重量%が好ましい。
[0057] [窒素原子含有多官能性単量体 (B)由来の単位を少なくとも有する重合体 (C) ] 本発明にお 、て分子内に 2以上のラジカル重合性基を有する窒素原子含有多官 能性単量体 (B)を用いることにより、次の特性の向上効果が期待できる。
[0058] 例えば、後述するエチレン性不飽和単量体 (D)を重合する際のポリオルガノシロキ サン (A)へのグラフト効率を高めることができると考えられ、これによりエチレン性不飽 和単量体 (D)の使用量をなるベく少なく抑えることが可能になり、相対的にポリオル ガノシロキサン (A)成分の割合を高めることができる。この結果、可燃成分であるェチ レン性不飽和単量体 (D)の使用量を低減することができ、得られる榭脂組成物の難 燃性の悪ィ匕を抑制、もしくは改善することができる。さらには、ポリオルガノシロキサン 系共重合体自体の耐熱性を向上させることができる。これは窒素原子含有多官能性 単量体 (B)由来の重合体の耐熱性が高いことに起因すると考えられる。また、ァリル メタタリレート、 1, 3—ブチレングリコールジメタタリレートなどのメタタリレート系の多官 能性単量体、ブタジエンなどのジェン類、ジビニルベンゼンなどを用いた場合などと 比較して難燃性の悪ィ匕を抑制、もしくは改善することができる。
[0059] 本発明に用いる窒素原子含有多官能性単量体 (B)としては、トリアリルアミンなどの 三級アミン類、ジァリルイソシァヌレート、ジァリル一 n—プロピルイソシァヌレート、トリ ァリルイソシァヌレート、トリメタリルイソシァヌレート、トリス((メタ)アタリ口キシェチル) イソシァヌレートなどのイソシァヌル酸骨格を有する化合物、トリァリルシアヌレートに 代表されるシァヌル酸骨格を有する化合物、トリ (メタ)アタリロイルへキサハイド口トリ ァジンなどがあげられ、中でもイソシァヌル酸骨格を有する化合物、特にトリアリルイソ シァヌレート、またはシァヌル酸骨格を有する化合物、特にトリァリルシアヌレートが好 ましぐトリアリルイソシァヌレートがもっとも好ましく用いられる。
[0060] 本発明にお 、ては窒素原子含有多官能性単量体 (B)は、当該単量体 (B)と共重 合可能な他の単量体との混合物として用いることができる。単量体 (B)の割合は該混 合物中に 5重量%以上であることが好ましぐ 20重量%以上がより好ましぐ 50重量 %以上がさらに好ましぐ 80重量%以上が特に好ましぐ窒素原子含有多官能性単 量体 (B)単独で用いることが難燃性発現の上で最も好ま Uヽ。
[0061] 前記単量体 (B)と共重合可能な他の単量体の具体例は後述するエチレン性不飽 和単量体(D)と同様のものが用いられる。その他、ジビュルベンゼン、ジビュルナフ タレン、ジビ-ルアントラセン、ジイソプロべ-ルベンゼン、ァリル(メタ)アタリレート、ト リアリルベンゼントリカルボキシレート、ジァリルフタレート、エチレングリコールジメタク ジレー卜、 1, 3 ブチレングジ ーノレジメタクジレー卜、 2, 2,ージビ-ノレビフ ノレ、 2, 4,ージビニノレビフエ二ノレ、 3, 3,ージビニノレビフエ二ノレ、 4, 4,一ジビニルビフエニル 、 2, 4,ージ(2—プロべ-ル)ビフエ-ル、 4, 4,ージ(2—プロべ-ル)ビフエ-ル、 2 , 2,一ジビニルー 4 ェチル 4,一プロピルビフエニル、 3, 5, 4,一トリビニノレビフエ -ルなどの多官能性単量体も用いることができる。
[0062] 良好な難燃性発現のために、前記単量体 (B)と共重合可能な他の単量体はスチレ ン、 α—メチノレスチレン、ビニノレナフタレン、ビニノレビフエ二ノレなどの芳香族ビニノレ系 単量体、アクリロニトリルなどのシアン化ビュル系単量体、メチルメタタリレート、ェチル メタタリレート、メチルアタリレート、ェチルアタリレートといったアルキル基の炭素数が 2以下のアルキル (メタ)アタリレート、 2, 2,—ジビ-ルビフエ-ル、 2, 4,—ジビュル ビフエ-ル、 3, 3,ージビニノレビフエ二ノレ、 4, 4,ージビニノレビフエ二ノレ、 2, 4,ージ(2 —プロべ-ル)ビフエ-ル、 4, 4,一ジ(2—プロべ-ル)ビフエ-ル、 2, 2,一ジビ-ノレ 4ーェチルー 4,—プロピルビフエ-ル、 3, 5, 4,—トリビ-ルビフエ-ルなどの非縮 合多芳香環含有多官能性単量体が好まし 、。
[0063] これらの中でも、特に単独重合体のガラス転移温度が好ましくは 40°C以上、より好 ましくは 60°C以上、さらには 90°C以上である単量体のみを選択すると、最終的に難 燃性の良好な成形体を得ることができる。力かる単量体としてはスチレン、 a メチル スチレン、ビニルナフタレン、ビニノレビフエ二ノレ、アタリロニトリノレ、メタタリロニトリノレ、メ チルメタタリレート、 2, 2,一ジビニノレビフエ-ノレ、 2, 4,一ジビニノレビフエ二ノレ、 3, 3, —ジビニノレビフエ-ノレ、 4, 4,一ジビニノレビフエ-ノレ、 2, 4,一ジ(2—プロべ-ル)ビ フエ-ル、 4, 4,一ジ(2—プロべ-ル)ビフエ-ル、 2, 2,一ジビュル一 4 ェチルー 4'—プロピルビフエニル、 3, 5, 4'—トリビニルビフエニルなどがあげられる。
[0064] かかる窒素原子含有多官能性単量体 (B)を含む単量体若しくは単量体混合物を、 公知のラジカル重合法を用いて重合することにより重合体 (C)を得ることができる。ポ リオルガノシロキサン (A)をェマルジヨンとして得た場合には、窒素原子含有単量体( B)を含む単量体の重合は乳化重合法により行うことが好ま 、。
[0065] 乳化重合法を採用する場合には、公知の重合開始剤、すなわち 2, 2'ーァゾビスィ ソブチ口-トリル、過酸化水素、過硫酸カリウム、過硫酸アンモ-ゥムなどを熱分解型 重合開始剤として用いることができる。また、 t ブチルパーォキシイソプロピルカー ボネート、パラメンタンハイド口パーオキサイド、クメンハイド口パーオキサイド、ジクミル パーオキサイド、 t ブチルハイド口パーオキサイド、ジー t ブチルパーオキサイド、 t 一へキシルバーオキサイドなどの有機過酸ィ匕物;過酸ィ匕水素、過硫酸カリウム、過硫 酸アンモニゥムなどの無機過酸ィ匕物といった過酸ィ匕物と、必要に応じてナトリウムホ ルムアルデヒドスルホキシレート、グルコースなどの還元剤、および必要に応じて硫酸 鉄 (Π)などの遷移金属塩、さらに必要に応じてエチレンジァミン四酢酸ニナトリウムな どのキレート剤、さらに必要に応じてピロリン酸ナトリウムなどのリン含有ィ匕合物などを 併用したレドックス型重合開始剤として使用することもできる。
[0066] レドックス型重合開始剤系を用いた場合には、前記過酸化物が実質的に熱分解し な!、低 、温度でも重合を行うことができることから、重合温度を広!、範囲で設定でき るようになり好ましい。中でもクメンハイド口パーオキサイド、ジクミルパーオキサイドな どの芳香族環含有過酸ィ匕物をレドックス型重合開始剤として用いることが好まし 、。 前記重合開始剤の使用量、またレドックス型重合開始剤を用いる場合の前記還元剤 •遷移金属塩 'キレート剤などの使用量は、公知の範囲で用いることができる。また窒 素原子含有多官能性単量体 (B)を含む単量体を重合するに際しては、公知の連鎖 移動剤を公知の範囲で用いることができる。追加的に界面活性剤を添加することが できるが、これも公知の範囲で用いることができる。
[0067] 前記の重合に際しての重合温度、圧力、脱酸素などの条件は、公知の範囲のもの が適用できる。また、前記窒素原子含有単量体 (B)を含む単量体の重合は 1段で行 なっても 2段以上で行なっても良!ヽ。ポリオルガノシロキサン (A)のエマノレジョンに窒 素原子含有単量体 (B)を含む単量体を、一度に添加する方法、連続追加する方法、 あらかじめ窒素原子含有単量体 (B)を含む単量体が仕込まれた反応器にポリオルガ ノシロキサン (A)のェマルジヨンをカ卩えて力も重合を実施する方法などを適宜採用す ることがでさる。
[0068] 本発明のポリオルガノシロキサン系グラフト共重合体 (該共重合体を構成するシロキ サン及びモノマー単位の総量を 100重量%とする)において、窒素原子含有多官能 性単量体 (B)由来の単位を少なくとも有する重合体 (C)部位の含有量は、得られる 榭脂組成物の難燃性を損なわないために、好ましくは 0. 1重量%以上、より好ましく は 0. 5重量%以上、さらには 1重量%以上であり、好ましくは 30重量%以下、より好 ましくは 20重量%以下、さらには 10重量%以下であり、もっとも好ましい範囲は 1〜5 重量%である。
[0069] [エチレン性不飽和単量体 (D)由来の重合体 (E) ]
本発明に用いるエチレン性不飽和単量体 (D)は、本発明のポリオルガノシロキサン 系グラフト共重合体とマトリックス榭脂との相溶性を確保するために、重合体 )に導 入される成分である。良好な難燃性を得るために、エチレン性不飽和単量体 (D)を 重合して得られる重合体 (E)のガラス転移温度は 40°C以上であり、 60°C以上が好ま しぐ 90°C以上がより好ましい。エチレン性不飽和単量体 (D)は 1段で重合しても 2段 以上で重合してもかまわないが、 2段以上で重合する場合でも、いずれの段におい ても重合体のガラス転移温度が前述の範囲を満たすように単量体組成を調整するこ とが好ましい。
[0070] またエチレン性不飽和単量体 (D)は単一化合物でも 2以上の化合物の混合物であ つても力まわないが、得られる重合体のガラス転移温度は前述の通りに設定すること が好ましい。なお本発明でいうガラス転移温度は、 John Wiley & Son社出版「ポリ マーハンドブック」 1999年、第 4版記載のもので代用でき、共重合体である場合には 共重合体中の重量分率が 5%以上を占める単量体単位に着目し、各単量体成分の 単独重合体のガラス転移温度と前記重量分率力も Foxの式に基づいて算出したもの で代用できる。 [0071] エチレン性不飽和単量体(D)として用いる単量体の具体例としては、スチレン、 oc ーメチルスチレン、ビュルナフタレン、ビ-ルビフエ-ルなどの芳香族ビュル系単量 体、アクリロニトリルなどのシアン化ビュル系単量体、メチルアタリレート、ェチルアタリ レート、ブチルアタリレート、ォクチルアタリレート、 2—ェチルへキシルアタリレート、ラ ゥリルアタリレート、ステアリルアタリレート、ベンジルアタリレート、メチルメタタリレート、 ェチルメタタリレート、ブチルメタタリレート、ォクチルメタタリレート、ラウリノレメタクリレー ト、ミリスチルメタタリレート、ステアリルメタタリレート、ベへ-ルメタタリレート、ベンジノレ メタタリレートなどのアルキル (メタ)アタリレート、アクリルアミド、メタクリルアミド、ドデシ ルメタクリルアミド、シクロドデシルメタクリルアミド、ァダマンチルメタクリルアミドなどの (メタ)アクリルアミド類などがあげられる。なお、本発明において特に断らない限り、例 えば (メタ)アクリルとはアクリルおよび Zまたはメタクリルを意味する。
[0072] 中でも、良好な難燃性を得るためには、スチレン、 a—メチルスチレン、ビュルナフ タレン、ビ-ルビフエ-ルなどの芳香族ビュル系単量体、アクリロニトリルなどのシアン 化ビュル系単量体、メチルメタタリレート、ェチルメタタリレート、メチルアタリレート、ェ チルアタリレートなどのアルキル基の炭素数が 2以下のアルキル (メタ)アタリレートが 好ましい。より好ましくは、単独重合体のガラス転移温度が 40°C以上、さらに好ましく は 60°C以上、さらには 90°C以上である単量体のみを用いるとさらに良好な難燃性を 得ることができる。力かる単量体の具体例としてはスチレン、 a—メチルスチレン、ビ 二ルナフタレン、ビュルビフエ二ル、アクリロニトリル、メタタリロニトリル、メチルメタタリ レートなどをあげることができる。必要に応じてィタコン酸、(メタ)アクリル酸、フマル酸 、マレイン酸などのカルボキシル基含有ビュル系単量体、 4 スチレンスルホン酸、 2 アクリルアミドー 2—メチルプロパンスルホン酸などのスルホン酸基含有ビュル系単 量体またはそれらのナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アルミ -ゥム塩、有機フォスフォ -ゥム塩、有機スルフォ-ゥム塩ゃ有機アンモ-ゥム塩、グ リシジルメタタリレートなどのエポキシ基含有ビュル系単量体、 2—ヒドロキシェチルメ タクリレート、 4ーヒドロキシブチルアタリレートなどの水酸基含有ビュル系単量体など の官能基含有ビュル系単量体を併用することもできる。
[0073] エチレン性不飽和単量体 (D)の重合に際しては、必須ではないが、得られるポリオ ルガノシロキサン系共重合体の耐熱性や熱安定性、最終成形体の難燃性'耐衝撃 性などがともに改良される場合があることから、連鎖移動剤を用いることが好まし 、。 具体的な連鎖移動剤としては α—ビネン,ターピノーレン、リモネンなどの不飽和テ ルペン類、 η—ォクチルメルカプタン、 tーォクチルメルカプタン、 n—ドデシルメル力 プタン、 tードデシルメルカプタン、 2—ェチルへキシルチオグリコレートなどのメルカ ブタン類などが例示され、中でも前記メルカブタン類が好ましく用いられる。さらに臭 気のな 、ポリオルガノシロキサン系グラフト共重合体もしくは榭脂組成物が得られるこ とから 2—ェチルへキシルチオグリコレートがもっとも好ましく用いられる。
[0074] 前記連鎖移動剤のエチレン性不飽和単量体 (D)に対する使用量は、好ましくは 0.
01重量%以上、より好ましくは 0. 05重量%以上、さらには 0. 1重量%以上であり、 好ましくは 10重量%以下、より好ましくは 5重量%以下、さらには 2重量%以下である 。 10重量%を超えての使用はエチレン性不飽和単量体 (D)から生成する重合体の グラフト効率が低下するために本発明のポリオルガノシロキサン系グラフト共重合体 のマトリックス榭脂中での分散性が低下する場合があり、難燃性や機械的特性にお Vヽて悪ィ匕が見られる場合がある。
[0075] 前述のポリオルガノシロキサン (A)部位および窒素原子含有単量体 (B)由来の単 位を少なくとも有する重合体 (C)部位を含むポリオルガノシロキサン系共重合体をェ マルジヨンとして得た場合には、エチレン性不飽和単量体 (D)の重合は乳化重合法 により行うことが好ましい。別の好ましい方法として、前記ポリオルガノシロキサン系共 重合体ェマルジヨンを硫酸ナトリウム、塩ィ匕カルシウム、硫酸マグネシウムなどを用い て塩析するなどで破壊して得たスラリーとエチレン性不飽和単量体 (D)を共存させ、 または液滴状のエチレン性不飽和単量体 (D)と前記ポリオルガノシロキサン系共重 合体ェマルジヨンの混合物に塩などを添カ卩して前記ポリオルガノシロキサン系共重合 体成分をエチレン性不飽和単量体 (D)液滴に吸着させ、弓 Iき続 、てエチレン性不飽 和単量体 (D)の重合を行う方法 (以下懸濁シード重合法と言う)などを採用することが できる。
[0076] エチレン性不飽和単量体 (D)を乳化重合するに際して用いる重合開始剤系、界面 活性剤、及びそれらの量、さらに重合温度、圧力、脱酸素、攪拌などの条件は、前述 の窒素原子含有多官能性単量体 (B)を含む単量体を重合する場合と同様である。 懸濁シード重合法により重合するに際しては、あら力じめラウロイルパーオキサイド、 ベンゾィルパーオキサイドなどの過酸化物、ァゾビスイソブチ口-トリルなどのァゾ化 合物など、好ましくは熱分解性の重合開始剤を事前にエチレン性不飽和単量体 (D) に溶解させておき、その後懸濁状態にして力 反応液の温度を好ましくは 60°C以上 、より好ましくは 70°C以上、さらには 80°C以上に昇温して重合を開始させることがで きる。
[0077] この際、懸濁粒子が不安定ィ匕して粗大化することを防止するためにポリビニルアル コール、ポリエチレンオキサイド、リン酸カルシウムなどの保護コロイド剤を使用するこ とができる。前記開始剤、保護コロイド剤の使用量、ならびに圧力、脱酸素、攪拌など の条件は公知の条件を適用できる。
[0078] 本発明のポリオルガノシロキサン系グラフト共重合体 (該共重合体を構成するシロキ サン及びモノマー単位の総量を 100重量%とする)において、エチレン性不飽和単 量体 (D)由来の重合体 (E)の含有量は、得られる樹脂組成物の難燃性を損なわな いために、好ましくは 0. 5重量%以上、より好ましくは 3重量%以上、さらには 5重量 %以上であり、好ましくは 34. 9重量%以下、より好ましくは 24. 5重量%以下、さらに は 15重量%以下である。
[0079] 力べして乳化重合により本発明のポリオルガノシロキサン系グラフト共重合体を得た 場合には、ラテックスに塩ィ匕カルシウム、塩化マグネシウム、硫酸マグネシウム、塩ィ匕 アルミニウムなどの二価以上の金属塩を添加することにより凝固した後に熱処理 ·脱 水 ·洗浄 ·乾燥することによりグラフト共重合体を水性媒体力 分離することができる( 凝固法)。上記二価以上の金属塩としては、特に経済的に安価に入手でき、さらに取 扱いやすい点から、塩化カルシウム、塩化マグネシウムが好ましい。
[0080] 環境への配慮力 微量のハロゲンも含まないことが望まれる場合には、硫酸マグネ シゥムが好適に用いられる。塩凝固の後の工程において、脱水前までにスラリーをグ ラフト共重合体の固形分の好ましくは 20倍、より好ましくは 30倍、さらには 50倍以上 に希釈するか、脱水後の工程でグラフト共重合体の固形分の好ましくは 3倍、より好 ましくは 5倍、さらには 10倍以上の溶剤、好ましくは環境負荷の観点から水を散布し て洗浄することにより、マトリックス榭脂の成形時の焼けや分解などの問題を減少した り、難燃性と機械的特性のバランスをより良好にすることができる。
[0081] または、メタノール、エタノール、プロパノールなどのアルコール、アセトンなどの水 溶性有機溶剤をラテックスに添加して共重合体を析出させ、遠心または濾過などによ り溶剤と分離した後乾燥させ、単離することもできる。別の方法として、本発明のダラ フト共重合体を含むラテックスにメチルェチルケトンなどの若干の水溶性を有する有 機溶剤を加えてラテックス中の共重合体を有機溶剤層に抽出し、有機溶剤層を分離 した後水と混合して共重合体成分を析出させる方法などをあげることができる。
[0082] また、ラテックスを噴霧乾燥法により直接粉体ィ匕することもできる。この場合、得られ た粉体を前述の凝固法同様に溶剤で洗浄することにより、同様の効果を得ることがで きる。または得られた粉体に塩ィ匕カルシウム、塩化マグネシウム、硫酸マグネシウム、 塩ィ匕アルミニウムなどを、好ましくは水溶液などの溶液で添加することにより、同様の 効果を得ることができる。懸濁シード重合法により本発明のグラフト共重合体を得た 場合には、脱水 ·洗浄 ·乾燥することにより水性媒体力も分離することができる。この 場合にも凝固法同様に溶剤で希釈または洗浄することにより、同様の効果を得ること ができる。
[0083] 配合して榭脂組成物を得る際に、マトリックス榭脂として粉体状のものを用いる場合 には、本発明のグラフト共重合体を、体積平均粒子径が好ましくは 1 μ m以上、より好 ましくは 10 μ m以上、さらには 50 μ m以上、好ましくは lmm以下、より好ましくは 500 /z m以下、さらには 200 m以下の粉体として回収することが好ましい。特にマトリツ クス榭脂の粉体の平均粒子径に近 、、ある 、は同様の体積平均粒子径であることが 、分級しに《なるので好ましい。前記粉体としては、本発明の共重合体が緩やかに 凝集した状態のものであることが、マトリックス榭脂中でグラフト共重合体の一次粒子 が容易に分散する観点から、好ましい。
[0084] 前述のようにして得られる本発明のグラフト共重合体のグラフト率は、得られる榭脂 組成物の難燃性を損なわないために、好ましくは 1. 001以上、より好ましくは 1. 01 以上、さらには 1. 04以上、特には 1. 08以上であり、好ましくは 2以下、より好ましく は 1. 4以下、さらには 1. 28以下、特には 1. 15以下である。なお本発明でいうグラフ ト率は次の様に算出する。すなわち、本発明のグラフト共重合体約 2gを精秤したのち 、約 lOOgの 2—ブタノンを抽出溶媒として 12時間その中に浸漬する。超遠心分離機 によりゲル分を沈降させて上澄みとゲル分を分離し、回収されたゲル分に対し 2—ブ タノンの追加と超遠心分離操作をさらに 2回繰り返して行なう。回収されたゲル分を乾 燥させ、重量を精秤し、ゲル分含有率を下記 (式 1)に従って求める。
ゲル分含有率 (%) =ゲル分残渣重量 Zグラフト共重合体重量, · ·(式 1)
次に先の 2—ブタノン可溶成分の上澄みすベてをあわせ、溶液が約 20gになるまで 濃縮し、これを 300mlのメタノール中に滴下してメタノール不溶の成分を再沈殿する (以下、当該成分をフリーポリ一マーと呼ぶ。;)。フリーポリマーを回収'乾燥して重量 を精秤し、フリーポリマー含有率を下記 (式 2)に従って求める。
フリーポリマー含有率(%) =フリーポリマー重量 Zグラフト共重合体重量' · ·(式 2) 該グラフト共重合体中のシロキサン使用率を下記 (式 3)を用いて求める。
シロキサン使用率(%) =ポリオルガノシロキサン成分のみの原料重量 Zグラフト共重 合体原料総重量 · · ·(式 3)
ゲル分含有率、フリーポリマー含有率、シロキサン使用率を用いて下記 (式 4)として グラフト率を求める。
グラフト率(%) =ゲル分含有率 Z ( (ゲル分含有率 +フリーポリマー含有率) Xシロキ サン使用率) · · ·(式 4)
本発明のグラフト共重合体に含まれる 2—ブタノンに可溶かつメタノールに不溶であ る成分 0. 2gを 100cm3のアセトンに溶解し、当該溶液を 30°Cで測定した還元粘度( 30°C、 0. 2gZl00cm3アセトン溶液の条件と記載する)は、得られる榭脂組成物の 難燃性を損なわないために、好ましくは 0. OldlZg以上、より好ましくは 0. 02dl/g 以上、さらには 0. 035dlZg以上であり、好ましくは 0. 8dlZg以下、より好ましくは 0. 4dlZg以下、さらには 0. 2dlZg以下、特には 0. 12dlZg以下である。当該成分を 分離する方法は、前述のグラフト率の算出にて得たフリーポリマー成分を得る方法と 同一である。
前述のようにして得られる本発明のグラフト共重合体に含まれる 2—ブタノンに可溶 かつメタノールに不溶である成分の GPCによるポリスチレン換算重量平均分子量は 、得られる榭脂組成物の難燃性を損なわないために、好ましくは 10, 000以上であり 、より好ましくは 30, 000以上、さらに好ましくは 50, 000以上、特に好ましくは 80, 0 00以上であり、好ましくは 1, 000, 000以下、より好ましくは 450, 000以下、さらに 好ましくは 200, 000以下、特に好ましくは 150, 000以下である。該成分を分離する 方法は、前述のグラフト率の算出にて得たフリーポリマー成分を得る方法と同一であ る。
[0086] 本願発明では、熱可塑性榭脂ゃ熱硬化性榭脂、エラストマ一などのマトリックス榭 脂に本発明のグラフト共重合体を配合して、榭脂組成物として用いることができる。本 発明のグラフト共重合体は耐衝撃性など機械的特性を改良しながらも難燃性の悪ィ匕 が少ないことに特徴があり、対象榭脂ゃ配合剤を好ましく調整することで難燃性を維 持、さら〖こは向上させ、該マトリックス榭脂用の難燃剤として用いることもできる。前記 榭脂組成物は、最終的に得られる成形体に高度の難燃性と耐衝撃性を付与すること のできる難燃性榭脂組成物として用いることができる。
[0087] 本発明のグラフト共重合体のマトリックス榭脂に対する使用量は、難燃性と耐衝撃 性に代表される機械的特性のノ《ランスを取るという観点で、それらマトリックス榭脂 10 0重量部あたり、 0. 1重量部以上、さらには 0. 5重量部以上、特には 1重量部以上配 合することが好ましい。また、 20重量部以下、さらには 10重量部以下、特には 6重量 部以下、 4重量部以下が最も好ましい。上記範囲を上回る場合には成形が困難にな つたり耐熱性が低下する場合があり、下回る場合には難燃性 '耐衝撃性ともに発現し にくい傾向がある。
[0088] 前記マトリックス榭脂として用いることができる好ましい熱可塑性榭脂としては、芳香 族ポリカーボネート、脂肪族ポリカーボネートなどのポリカーボネート榭脂、ポリエステ ル榭脂、ポリエステルカーボネート榭脂、ポリフエ二レンエーテル榭脂、ポリフエ二レン スルフイド榭脂、ポリスルフォン系榭脂、ポリエーテルスルフォン榭脂、ポリアリーレン 榭脂、ナイロンなどのポリアミド榭脂、ポリエーテルイミド榭脂、ポリオキシメチレンなど のポリアセタール榭脂、ポリビニルァセタール榭脂、ポリケトン樹脂、ポリエーテルケト ン榭脂、ポリエーテルエーテルケトン樹脂、ポリアリールケトン榭脂、ポリエーテル-ト リル榭脂、液晶榭脂、ポリべンズイミダゾール榭脂、ポリパラバン酸榭脂、芳香族アル ケ-ル化合物、メタクリル酸エステル、アクリル酸エステルおよびシアン化ビュル化合 物からなる群より選ばれる 1種以上のビニル単量体を重合若しくは共重合させて得ら れるビニル系重合体若しくは共重合体榭脂、シアンィ匕ビ二ルー(エチレン ジェン プロピレン (EPDM) )—芳香族ァルケ-ルイ匕合物共重合体榭脂、ポリオレフイン、塩 化ビュル系榭脂があげられる。これらは単独で、あるいは 2種以上をブレンドして用い ることがでさる。
[0089] 本発明において用いることができるポリフエ-レンエーテル榭脂とは、下記の化学 式 (化 1)
[0090] [化 1]
Figure imgf000024_0001
[0091] (式中、 Q ^Q4は水素および炭化水素基力もなる群力もそれぞれ独立に選択される 基であり、 mは 30以上の整数を示す。)で表される単独重合体または共重合体であ る。
[0092] 前記ポリフエ-レンエーテル榭脂の具体例としては、ポリ(2, 6 ジメチルー 1, 4 フエ-レン)エーテル、ポリ(2—メチル 6 プロピル一 1, 4 フエ-レン)エーテル、 ポリ(2, 6 ジェチルー 1, 4 フエ-レン)エーテル、ポリ(2 ェチルー 6 プロピル —1, 4 フエ-レン)エーテル、ポリ(2, 6 ジプロピル一 1, 4 フエ-レン)エーテ ル、 (2, 6 ジメチル— 1, 4 フエ-レン)エーテルと(2, 3, 6 トリメチル—1, 4— フエ-レン)エーテルの共重合体、(2, 6 ジェチルー 1, 4 フエ-レン)エーテルと (2, 3, 6 トリメチルー 1, 4 フエ-レン)エーテルの共重合体、(2, 6 ジメチルー 1, 4 フエ-レン)エーテルと(2, 3, 6 トリェチルー 1, 4 フエ-レン)エーテルの 共重合体などがあげられる。
[0093] 特にポリ(2, 6 ジメチルー 1, 4 フエ-レン)エーテル、および(2, 6 ジメチルー 1, 4 フエ-レン)エーテルと(2, 3, 6 トリメチルー 1, 4 フエ-レン)エーテルとの 共重合体が好ましぐポリ(2, 6—ジメチルー 1 , 4—フエ-レン)エーテルが最も好ま しい。
[0094] これらのポリフエ-レンエーテル榭脂は、あらゆる配合比率においてポリスチレン榭 脂と相溶性を有する。本発明にお 、て用いられるポリフエ-レンエーテル榭脂の重合 度に特に限定はないが、 0. 2gを 100cm3のクロ口ホルムに溶解し、当該溶液を 25°C で測定した還元粘度が 0. 3〜0. 7dlZgのものが好ましく用いられる。還元粘度が 0 . 3dlZg未満のものでは熱安定性が悪くなる傾向があり、 0. 7dl/g を超えるもので は成形性が損なわれる傾向がある。これらポリフエ-レンエーテル榭脂は、単独でま たは 2種以上混合して用いられる。
[0095] 前記ポリフエ-レンエーテル榭脂は、他の樹脂と混合して用いることができ、好まし くは後述のポリスチレン榭脂と混合して用いることができる。他の樹脂と混合して用い る時のポリフエ-レンエーテル榭脂と他の樹脂との好ましい混合比率は公知の範囲 で設定することができる。
[0096] 本発明に用いることができる塩ィ匕ビ二ル系榭脂とは、塩化ビニル単独重合体、又は 塩ィ匕ビュルと共重合し得る二重結合を少なくとも 1個有する他のビュル単量体と塩ィ匕 ビュルとの共重合体、塩素化塩ィ匕ビニル榭脂、塩素化ポリエチレン榭脂をいい、共 重合体中の他のビニル単量体は好ましくは 50重量%以下、より好ましくは 45重量% 以下である。
[0097] 上記二重結合を少なくとも 1個有する他のビュル単量体の例としては、エチレン、プ ロピレン、酢酸ビュル、 (メタ)アクリル酸およびそのエステル、マレイン酸およびその エステル、塩ィ匕ビユリデン、臭化ビュルならびにアクリロニトリルがあげられる。これら の塩ィ匕ビュル系榭脂は、塩ィ匕ビュル単独または塩ィ匕ビュルと前記他のビュル単量体 とをラジカル重合開始剤の存在下で単独重合または共重合することによって得られる ものである。この塩化ビュル系榭脂の重合度は、通常 400〜4500であり、特に 400 〜 1500力女子まし!/ヽ。
[0098] 本発明にお 、て用いることができる芳香族ァルケ-ルイ匕合物、メタクリル酸エステル 、アクリル酸エステルおよびシアン化ビュル化合物力 選ばれる 1種以上のビュル単 量体を重合若しくは共重合させて得られるビニル系重合体若しくは共重合体榭脂に は、ジェン系単量体、ォレフィン系単量体、マレイミド系単量体などが共重合されても 良ぐさらにそれらが水添されていても良い。力かるビニル系重合体若しくは共重合 体榭脂としては、ポリスチレン榭脂、 s ポリスチレン榭脂、ポリメチルメタタリレート榭 脂、ポリクロルスチレン榭脂、ポリブロムスチレン榭脂、ポリ aーメチルスチレン榭脂、 スチレン一アクリロニトリル共重合体榭脂、スチレン一メチルメタタリレート共重合体榭 脂、スチレン 無水マレイン酸共重合体榭脂、スチレン マレイミド共重合体榭脂、 スチレン—N—フエ-ルマレイミド共重合体榭脂、スチレン—N—フエ-ルマレイミド —アクリロニトリル共重合体榭脂、メチルメタタリレート一ブチルアタリレート共重合体 榭脂、メチルメタタリレート一ェチルアタリレート共重合体榭脂、スチレン一アタリ口-ト リル (Xーメチルスチレン三元共重合体榭脂、ジェン系成分あるいはフエ-ルマレイ ミド成分が含まれるブタジエン—スチレン共重合体 (HIPS)榭脂、アクリロニトリル— ブタジエンゴム スチレン共重合体 (ABS)榭脂、アクリロニトリル ブタジエンゴム —メチルスチレン共重合体榭脂、芳香族ァルケ-ルイ匕合物一ジェン一シアンィ匕ビ -ル— N—フエ-ルマレイミド共重合体榭脂等があげられる。
[0099] 本発明に用いることができるポリアミド榭脂としては、エチレンジァミン、テトラメチレ ンジァミン、へキサメチレンジァミン、デカメチレンジァミン、ドデカメチレンジァミン、 2 , 2, 4 および 2, 4, 4 トリメチルへキサメチレンジァミン、 1, 3 ビス(アミノメチル) シクロへキサン、 1 , 4 ビス(アミノメチル)シクロへキサン、ビス(p -アミノシクロへキ シル)メタン、 m—キシリレンジァミン、 p キシレンジァミンなどの脂肪族、脂環族また は芳香族ジァミンと、アジピン酸、スベリン酸、セバシン酸、シクロへキサンジカルボン 酸、テレフタル酸、イソフタル酸などの脂肪族、脂環族または芳香族ジカルボン酸か ら導かれるポリアミド; ε—力プロラタタム、 ω—ドデカラクタムなどのラタタム類を開環 重合することによって得られるポリアミド; 6 アミノカプロン酸、 1 , 1—アミノウンデカ ン酸、 1, 2—アミノドデカン酸など力 得られるポリアミド、およびこれらの共重合体、 またはブレンド物があげられ、工業的に安価かつ多量に製造されるナイロン 6、ナイ口 ン 6, 6、ナイロン 11、ナイロン 12、ナイロン 6, 10、ナイロン 4, 6およびこれらの共重 合体、あるいはそのブレンド物が好適である。
[0100] 本発明に用いることができるポリエステル系榭脂とは、ジカノレボン酸またはジカノレポ ン酸のアルキルエステルのような誘導体と、ジオールとの重縮合物によって得られた もの、ある 、は一分子中にカルボン酸またはカルボン酸のアルキルエステルのような 誘導体と水酸基をともに有する単量体を重縮合したもの、一分子中に環状エステル 構造を有する単量体を開環重合したものである。
[0101] ジカルボン酸としては、テレフタル酸、イソフタル酸、コハク酸、アジピン酸、セバシ ン酸などがあげられる。ジオールとしては、エタンジオール、プロパンジオール、ブタ ンジオール、ペンタンジオール、へキサンジオールなどがあげられる。一分子中に力 ルボン酸またはカルボン酸のアルキルエステルのような誘導体と水酸基をともに有す る単量体としては乳酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシへキサン 酸などのヒドロキシアルカン酸があげられる。一分子中に環状エステル構造を有する 単量体としては力プロラタトンなどがあげられる。
[0102] ポリエステル系榭脂としては、ポリメチレンテレフタレート、ポリエチレンテレフタレー ト、ポリプロピレンテレフタレート、ポリテトラメチレンテレフタレート、ポリブチレンテレフ タレート、ポリへキサメチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸、ポリ ヒドロキシ酪酸、ポリ(ヒドロキシ酪酸-ヒドロキシへキサン酸)、ポリコハク酸エチレン、 ポリコハク酸ブチレン、ポリアジピン酸ブチレン、ポリ ε一力プロラタトン、ポリ(α— ォキシ酸)およびこれらの共重合体、ならびにこれらのブレンド物が例示される力 本 発明においてはポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリ乳酸が 特に好ましい。
[0103] 本発明に用いることができるポリフエ-レンスルフイド樹脂とは、下記繰り返し単位: [0104] [化 2]
Figure imgf000027_0001
[0105] を 50モル%以上、好ましくは 70モル%以上有する重合度 80〜300の重合体である 。共重合成分として
[0106] [化 3]
Figure imgf000028_0001
[0107] (式中、 Rはアルキル基、ニトロ基、フ -ル基、アルコキシ基、カルボン酸基またはそ の金属塩を示す)等の単位があげられる力 これらの共重合成分は 10モル%以下が 好ましい。
[0108] ポリスルフォン系榭脂とは、 SO基を含有するポリマーで芳香族系とォレフィン系
2
に大別される力 本発明では好ましくは芳香族系を指す。例えば、ジクロロジフエ二ル スルフォンの縮重合反応によって得られる下記繰り返し単位を有する重合体:
[0109] [化 4]
Figure imgf000028_0002
[0110] ジクロロジフエ-ルスルフォンとビスフエノール Aから得られる下記繰り返し単位を有 する重合体:
[0111] [化 5]
Figure imgf000029_0001
[0112] があげられる。一般に前者はポリエーテルスルフォン榭脂と、後者はポリスルフォン榭 脂と呼ばれており、これらは本発明に有用である。
[0113] 本発明に用いることができるポリエーテルイミド榭脂とは、エーテル結合とイミド結合 を持ち合わせた下記繰り返し単位を有する重合体:
[0114] [化 6]
Figure imgf000029_0002
[0115] である。
[0116] 本発明に用いることができるポリビュルァセタール榭脂とは、ポリビニルアルコール をアルデヒド類で変性したもので、ポリビュルフォルマール、ポリビニルブチラールな どをあげることができる。
[0117] 本発明に用いることができるポリオレフイン系榭月旨とは、ポリエチレン、ポリプロピレン 、ポリメチルペンテン、ポリブテン、シクロォレフイン重合体若しくは共重合体に代表さ れるォレフインのみからの重合体だけでなぐォレインと共重合性二重結合を少なくと も 1個有する化合物との共重合体であることができる。この共重合性ィ匕合物としては、 (メタ)アクリル酸およびそのエステル、マレイン酸およびそのエステル、無水マレイン 酸、酢酸ビュルなどをあげることができる。これらの共重合性ィ匕合物は、 10重量%以 下の割合で用いられることが好ま 、。また本発明に用いることができるポリオレフィ ン系榭脂とは、ジェン系成分と他のビニル系単量体との共重合体を水添して得られ る共重合体、例えばアクリロニトリル—EPDM—スチレン共重合体 (AES)榭脂なども 含む概念である。また、ポリオレフイン系榭脂の重合度は、 300〜6000であることが 好ましい。
[0118] 本発明に用いられるポリアリーレン榭脂としては、例えばポリ(p—フエ二レン)、ポリ(
2, 5 チェ-レン)、ポリ(1, 4 ナフタレンジィル)などがあげられる。
[0119] 本発明に用いられるポリカーボネート榭脂とは、二価フエノールとホスゲンまたは力 ーボネート前駆体とを反応させて得られるものである。二価フエノールとしては、ビス( ヒドロキシァリール)アルカンが好ましぐ例えばビス(ヒドロキシフエ-ル)メタン、 1, 1
—ビス(4 ヒドロキシフエ-ル)ェタン、 1, 2 ビス(4 ヒドロキシフエ-ル)ェタン、 2 , 2 ビス(ヒドロキシフエ-ル)プロパン、 2, 2 ビス(4 ヒドロキシフエ-ル一 3—メ チルフエ-ル)プロパン、 2, 2 ビス(4 ヒドロキシ— 3, 5 ジブロモフエ-ル)プロ パン、 2, 2 ビス(4 ヒドロキシ一 3, 5 ジクロロフエ-ル)プロパン、 2, 2 ビス(ヒ ドロキシフエ-ル)へキサフルォロプロパンなどがあげられる。他の二価フエノールとし ては 1, 1—ビス(4 ヒドロキシフエ-ル)シクロへキサン; 1, 1—ビス(4 ヒドロキシフ ェニル) 3, 3, 5 トリメチルシクロへキサン; 1, 1—ビス(4 ヒドロキシフエ-ル)シ クロデカンなどのビス(4 ヒドロキシフエ-ル)シクロアルカン、 1, 1—ビス(4 ヒドロ キシフエ-ル)フノレオレン;1, 1—ビスクレゾーノレフノレオレン;1, 1—ビスフエノキシェ タノールフルオレンなどのフルオレン誘導体、フエ-ルビス(ヒドロキシフエ-ル)メタン ;ジフエニノレビス(ヒドロキシフエ-ル)メタン; 1 フエ-ル一 1, 1 ビス(4ーヒドロキシ フエ-ル)ェタンなどのフエ-ル基含有ビス(ヒドロキシフエ-ル)アルカン、 4, 4,ージ ヒドロキシジフエ-ル、ビス(4 -ヒドロキシフエ-ル)ォキシド、ビス(4 -ヒドロキシフエ -ル)スルフイド、ビス(4 ヒドロキシフエ-ル)スノレホン、ビス(4 ヒドロキシフエ-ル) スルホキシド、ビス(4—ヒドロキシフエ-ル)ケトン、ハイドロキノン、ピぺラジン、ジピぺ リジルハイドロキノン、レゾルシン等などがあげられる。これらの二価フエノールは、単 独または混合して用いられる。またこれらのうちで、ハロゲンを含まない二価フエノー ルが好ましく用いられる。特に好ましく用いられる二価フエノールはビス(ヒドロキシフ ェ -ル)メタン、 2, 2' ビス(ヒドロキシフエ-ル)プロパン、 4, 4'—ジヒドロキシジフエ -ル、 1, 1 ビス(4ーヒドロキシフエ-ル)フルオレンである。カーボネート前駆体とし てはジフエ-ルカーボネート等のジァリールカーボネート、ジメチルカーボネート、ジ ェチルカーボネート等のジアルキルカーボネートなどをあげることができる。これら芳 香族系のポリカーボネート榭脂の他に、ポリエチレンカーボネートのような脂肪族ポリ カーボネート榭脂も使用することができる。これらポリカーボネート榭脂は主鎖中にジ メチルシロキサンが共重合されたものであっても力まわない。
[0120] 本発明にお 、て用いることのできるポリケトンとしてはエチレンと一酸ィ匕炭素の交互 共重合体、 a一才レフインと一酸ィ匕炭素の交互共重合体などをあげることができる。
[0121] これら熱可塑性榭脂の中でも、特に芳香族ポリカーボネート系榭脂を用いるとき難 燃ィ匕効果が発現することから、好適である。前記芳香族ポリカーボネート系榭脂は、 芳香族ポリカーボネート榭脂と他の榭脂の総量に対して芳香族ポリカーボネート榭脂 を 50重量%以上含有する概念であり、 70重量%以上含むものが好ましぐ実質的に 芳香族ポリカーボネート榭脂が単独である場合が最も好ましい。ここで実質的に芳香 族ポリカーボネート榭脂が単独であるとは、少なくとも芳香族ポリカーボネート榭脂を
95重量%以上含んでなることを意味する。
[0122] 芳香族ポリカーボネート榭脂が前述の割合にある場合には良好な難燃性と耐衝撃 性力 Sバランスよく得られ、その効果は芳香族ポリカーボネート榭脂の比率が高まるほ ど良くなる傾向がある。また前記芳香族ポリカーボネート系榭脂としては、ポリアミド— ポリカーボネート榭脂、ポリエステル ポリカーボネート榭脂などの共重合体も用いる ことができるが、その場合には全榭脂中のポリカーボネート単位の割合が前記と同様 になるようにするのが好ましい。芳香族ポリカーボネート系榭脂に含まれる他の樹脂と しては、前述の熱可塑性榭脂にあげた芳香族ポリカーボネート榭脂以外の榭脂を用 いることがでさる。
[0123] 芳香族ポリカーボネート系榭脂を用いる場合、相乗的に難燃性を高める目的で硫 黄含有有機金属塩を含めることができる。前記硫黄含有有機金属塩は単独で用いて もよぐ 2種以上を併用してもよい。力かる硫黄含有有機金属塩としては、好ましくは、 スルホン酸金属塩、硫酸モノエステル金属塩、スルホンアミド金属塩等があげられる。 このうち、難燃性の観点から好ましくはスルホン酸金属塩が使用され、特に好ましくは 、 (アルキル)芳香族スルホン酸金属塩、パーフルォロアルカンスルホン酸金属塩、脂 肪族スルホン酸金属塩、ジァリールスルホンスルホン酸金属塩、アルキル硫酸金属 塩が使用される。 [0124] 前記金属塩の金属としては、好ましくはナトリウム、カリウム、リチウム、ルビジウム、 セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、ノ リウム、アルミ-ゥ ム等があげられ、より好ましくはナトリウム、カリウム、リチウム、ルビジウム、セシウムな どのアルカリ金属、さらにはナトリウム又はカリウムが好適に用いられる。
[0125] スルホンアミド金属塩の具体例としては、サッカリンのナトリウム塩、 N— (p トリルス ルホ -ル)—p トルエンスルホイミドのナトリウム塩、 N— (Ν' —ベンジルァミノカル ボ -ル)スルファ-ルイミドのナトリウム塩、 Ν— (フエ-ルカルボキシル)—スルファ- ルイミドのナトリウム塩等;(アルキル)芳香族スルホン酸金属塩としては、ドデシルべ ンゼンスルホン酸ナトリウム、パラトルエンスルホン酸ナトリウム、ジクロロベンゼンスル ホン酸ナトリウム、ベンゼンスルホン酸ナトリウム、キシレンスルホン酸ナトリウム、クメン スルホン酸ナトリウム等;パーフルォロアルカンスルホン酸金属塩としては、パーフル ォロブタンスルホン酸カリウム、パーフルォロメチルブタンスルホン酸カリウム等;脂肪 族スルホン酸金属塩としては、ドデシルスルホン酸ナトリウム、ジォクチルスルホコハク 酸ナトリウム等;ジァリールスルホンスルホン酸金属塩としては、ジフエ-ルスルホン— 3—スルホン酸カリウム、 4, 4,—ジブロモジフエ-ルースルホン— 3—スルホン酸カリ ゥム、 4—クロ口一 4,一-トロジフエ-ルスルホン一 3—スルホン酸カリウム、ジフエ- ルスルホン 3, 3' ジスルホン酸カリウム等;アルキル硫酸金属塩としてはドデシル 硫酸ナトリウムなどがあげられる。
[0126] 上記のうち、難燃性が少量で良好になるという点力もパーフルォロブタンスルホン 酸カリウム、あるいはハロゲンを含まないことおよび難燃性が少量で良好になるという 点から、ジフエニルスルホン一 3—スルホン酸カリウム、ドデシルベンゼンスルホン酸 ナトリウム、キシレンスルホン酸ナトリウム、クメンスルホン酸ナトリウムが特に好ましく使 用される。ドデシルベンゼンスルホン酸に代表される(アルキル)芳香族スルホン酸の ナトリウム塩が、工業的に安価に入手して利用でき、最も好ましい。
[0127] 前記硫黄含有有機金属塩を用いる場合には、前記芳香族ポリカーボネート系榭脂 100重量部に対して 0. 001重量部以上 (より好ましくは 0. 005重量部以上、さらに は 0. 01重量部以上)が好ましい。また、 0. 5重量部以下 (より好ましくは 0. 3重量部 以下、さらには 0. 019重量部以下、さらには 0. 015重量部以下)が好ましい。前記 硫黄含有有機金属塩の存在により、場合によっては榭脂組成物の強度の低下効果 が認められる場合はあるが、難燃性の改良効果が優れ、強度と難燃性のバランスを 取る上で好ま 、範囲が上記の範囲である。上記範囲より少な 、と燃焼性改良効果 が少な!/、あるいはほとんどなぐ多 、と逆に難燃性が悪ィ匕する場合がある。
[0128] 前記マトリックス榭脂として用いることができる好ま 、熱硬化性榭脂としてはェポキ シ榭脂、フエノール榭脂、尿素樹脂、メラミン榭脂、ポリイミド榭脂、ポリアミドイミド榭脂 、熱硬化性ポリエステル榭脂(不飽和ポリエステル榭脂)、アルキド榭脂、シリコーン 榭脂、ウレタン榭脂、ポリビュルエステル榭脂、ポリフタル酸ジァリル榭脂、ビスマレイ ミドートリァジン樹脂、フラン榭脂、キシレン榭脂、グアナミン榭脂、マレイン榭脂、ジシ クロペンタジェン榭脂などがあげられる。
[0129] 本発明に用いることができるエポキシ榭脂としては、半導体封止用エポキシ榭脂成 形材料に一般に使用されるものが利用可能である。例えば、フエノールノボラック型 エポキシ榭脂、クレゾ一ルノボラック型エポキシ榭脂等の、フエノール類、ビフエノー ル類或いはナフトール類をアルデヒド類と縮合して得られるノボラック榭脂をグリシジ ルエーテルィ匕したノボラック型エポキシ榭脂、 2, 2' , 6, 6'—テトラメチルビフエノー ルジグリシジルエーテル等のビフエ-ル型エポキシ榭脂、ビフエノール或いは芳香核 置換ビフェノール類或いはビスフエノール A、 F、 S、トリメチロールプロパン等の多価 フエノール類または多価アルコール類のポリグリシジルエーテル或いはその縮合物、 或いは 1分子中にシクロォレフインォキシド構造骨格を含有する脂環式エポキシ榭脂 等、当該分野で一般的に使用されるエポキシ榭脂が幅広く使用可能である。
[0130] これらのなかでも、ビフエノールまたは芳香核置換ビフエノールのジグリシジルエー テル或いはその縮合物、ノボラック型エポキシ榭脂、ジシクロペンタジェ-ル型ェポ キシ榭脂、 1分子中にシクロォレフインォキシド構造骨格を含有する脂環式エポキシ 榭脂から選ばれる 1種以上のエポキシ榭脂を、熱硬化性榭脂の全量に対して 50重 量%以上含有することが好ま U、。これらはフエノールノボラック等のフエノール榭脂 、脂肪族ァミン、芳香族ァミン、あるいは酸無水物やブロック化カルボン酸等のカルボ ン酸誘導体など用いて硬化することができる。この中では特に、得られる硬化物の耐 熱性が高くなるという点より、フエノール榭脂を使用することがより好ましい。 [0131] 前記マトリックス榭脂として用いることができる好ましいエラストマ一としては、天然ゴ ム、あるいはブチルアタリレートゴム、ェチルアタリレートゴム、ォクチルアタリレートゴ ムなどのアクリルゴム、ブタジエン一アクリロニトリル系共重合体などの-トリルゴム、ク ロロプレンゴム、ブタジエンゴム、イソプレンゴム、イソブチレンゴム、スチレン ブタジ ェンゴム、メチルメタクリレートーブチルアタリレートブロック共重合体、スチレン イソ ブチレンブロック共重合体、スチレン ブタジエンブロック共重合体、水添スチレン ブタジエンブロック共重合体、エチレン プロピレン共重合体(EPR)、水添エチレン ブタジエン共重合体(EPDM)、ポリウレタン、クロロスルホン化ポリエチレン、シリコ ーンゴム(ミラブル型、室温加硫型)、ブチルゴム、フッ素ゴム、ォレフィン系熱可塑性 エラストマ一、スチレン系熱可塑性エラストマ一、塩ビ系熱可塑性エラストマ一、ウレタ ン系熱可塑性エラストマ一、ポリアミド系熱可塑性エラストマ一、ポリエステル系熱可 塑性エラストマ一、フッ素系熱可塑性エラストマ一などの合成ゴムがあげられ、様々な ものを用いることができる。
[0132] 本発明のポリオルガノシロキサン系共重合体と前記マトリックス榭脂との混合は、通 常の公知の混練機械によって行なわれる。このような機械としてはミキシングロール、 カレンダーローノレ、バンバリ一ミキサー、ヘンシェルミキサー、リボンブレンダー、ニー ダー、押出機、ブロー成形機、インフレーション成形機等をあげることができる。
[0133] 本発明においては、前記グラフト共重合体含有榭脂組成物にさらに酸ィ匕防止剤を 配合することができる。使用できる酸ィ匕防止剤には制約はなぐフエノール系酸ィ匕防 止剤、リン系酸化防止剤、硫黄系酸ィ匕防止剤などを使用することができ、これらは単 独で、または組み合わせて使用することができる。
[0134] 前記フエノール系酸化防止剤の具体例としては、 2, 4—ジメチルー 6—(1 メチル ペンタデシル)フエノール、 2, 6 ジ tert—ブチルー p クレゾール、 4, 4' ーブ チリデンビス一(6— tert—ブチルー 3 メチルフエノール)、 2, 2' ーメチレンビス (4ーメチルー 6—tert ブチルフエノール)、 2, 2' ーメチレンビス一(4ーェチルー 6—tert ブチルフエノール)、 2, 6 ジ tert—ブチルー 4 ェチルフエノール、 1 , 1, 3 トリス(2—メチルー 4ーヒドロキシ 5—tert ブチルフエニル)ブタン、ォクタ デシルー 3— (3, 5—ジ tert—ブチルー 4ーヒドロキシフエ-ル)プロピオネート、テ トラキス〔メチレンー3— (3, 5—ジ tert—ブチルー 4ーヒドロキシフエ-ル)プロピオ ネート〕メタン、トリエチレングリコールビス〔3— (3— tert ブチル 4—ヒドロキシ一 5 メチルフエ-ル)プロピオネート〕、トリス(3, 5—ジ—tert—ブチルー 4ーヒドロキシ ベンジル)イソシァヌレイト、ブチリデン一 1 , 1—ビス一(2—メチル 4 ヒドロキシ一 5— t ブチル フエ-ル)などがあげられる。
[0135] これらは単独で、または組み合わせて使用することができる。中でも難燃性を良好 にするために好ましくは 2種以上のフエノール系酸ィ匕防止剤を組み合わせて用いるこ とができる。特に好ましい組み合わせとして 2, 4 ジメチル一 6— (1—メチルペンタ デシル)フエノールとォクタデシルー 3— (3, 5—ジ tert—ブチルー 4ーヒドロキシフ ェ -ル)プロピオネートとの組み合わせ、トリス(3, 5—ジ—tert—ブチルー 4ーヒドロ キシベンジル)イソシァヌレイトと他のフエノール系酸化防止剤との組み合わせ、特に 1, 1, 3 トリス(2—メチル 4 ヒドロキシ一 5— tert—ブチルフエ-ル)ブタンとの 組み合わせをあげることができる。
[0136] 前記リン系酸ィ匕防止剤の具体例としては、サイクリックネオペンタンテトライルビス(2 , 6 ジ— t—ブチル—4—メチルフエ-ル)フォスファイト、トリス(2, 4 ジ— tert—ブ チルフエ-ル)ホスファイト、ビス(2, 6 ジ tーブチルー 4 メチルフエ-ル)ペンタ エリスリトールホスファイト、 2, 2—メチレンビス(4, 6 ジ一 t—ブチルフエ-ル)オタ チルホスファイトなどがあげられる。
[0137] 前記硫黄系酸化防止剤の具体例としては、ジラウリルチォジプロピオネート、ジステ ァリノレチォジプロピオネート、ジミリスチノレチォジプロピオネート、ジトリデシノレチォジ プロピオネートなどがあげられる。前記フエノール系酸ィ匕防止剤であるトリス(3, 5— ジ tert ブチル 4 ヒドロキシベンジル)イソシァヌレイトとこれらを組み合わせて 用いると難燃性が良好となり好ましい。
[0138] 前記フ ノール系酸化防止剤と前記硫黄系酸化防止剤の両方の性質を兼ね備え た酸化防止剤として、たとえば 4, 4' ーチォビス一(6— tert—ブチルー 3—メチルフ ェノール)などを用いることもできる。
[0139] これらの酸ィ匕防止剤の使用量は、効果 コストのバランスの考慮して本発明のダラ フト共重合体含有榭脂組成物 100重量部に対して、好ましくは 0. 001重量部以上、 さらには 0. 01重量部以上、特に好ましくは 0. 015重量部以上であり、好ましくは 1重 量部以下、より好ましくは 0. 4重量部以下、さらには 0. 1重量部以下、特には 0. 075 重量部以下である。
[0140] 前記酸ィ匕防止剤のグラフト共重合体含有榭脂組成物との混合方法には制約が無く 、本発明のグラフト共重合体と熱可塑性榭脂、熱硬化性榭脂、エラストマ一から選択 される少なくとも 1つの樹脂との混合に際して酸ィ匕防止剤の混合を同時に行なう方法 、あらかじめ前記樹脂に酸ィ匕防止剤を混合したものに前記グラフト共重合体を混合 する方法、あらかじめ酸ィ匕防止剤とグラフト共重合体とを混合したものに前記榭脂を 混合する方法、あらかじめグラフト共重合体と前記樹脂とを混合したものに酸ィ匕防止 剤を混合する方法などがあげられる。
[0141] このとき、必要に応じて、通常使用される配合剤、すなわち滴下 (ドリップ)防止剤、 赤リン、ビスフエノール一ビス(ジフエ-ルフォスフェート)やトリフエ-ルフォスフェート に代表されるリン酸エステル、縮合リン酸エステル、テトラブロモビスフエノール一 A、 トリス(2, 3 ジブロモプロピル)イソシァヌレート、へキサブ口モシクロデカンなどの難 燃剤、ブタジエン—メチルメタタリレート—スチレン共重合体 (MBS)、アルキル (メタ) アタリレートゴムまたはポリオルガノシロキサンとアルキル (メタ)アタリレートゴム力もな る複合ゴムにメチルメタタリレート、スチレン、アクリロニトリルなどをグラフト共重合した 耐衝撃性改良剤、可塑剤、滑剤、高分子量ポリメチルメタタリレート系榭脂などの溶 融粘度 (弾性)調整剤、紫外線吸収剤、顔料、ガラス繊維などの繊維強化剤、タルク' マイ力 .炭酸カルシウム .酸化チタン'酸ィ匕亜鉛ナノ微粒子 '層状珪酸塩 ·金属微粒子 •カーボンナノチューブなどの充填剤、ポリアミド ポリエーテルブロック体'アルキレ ングリコール ·グリセリン ·脂肪酸エステルなどの帯電防止剤、テルペン榭脂 ·アタリ口 二トリルースチレン共重合体などの流動性改良剤、モノグリセリド'シリコーンオイル' ポリグリセリンなどの離型剤、エポキシ基含有ポリオルガノシロキサンなどの官能基含 有ポリオルガノシロキサン、(エポキシ変性)スチレン ブタジエン スチレンブロック 共重合体などの相溶化剤、ポリオール、シランカップリング剤、チタンカップリング剤 などの充填剤とマトリックス榭脂とのカップリング剤等などを適宜配合することができる [0142] 特に UL— 94試験などの燃焼試験時の滴下防止剤としてポリテトラフルォロェチレ ン、ポリフッ化ビ-リデンなどのフッ素系榭脂、またはポリテトラフルォロエチレンと (メ タ)アクリル酸エステル、芳香族アルケニル化合物、シアン化ビニルなどを重合して得 られる重合体などの他の重合体とを複合ィ匕させた粉体、ポリオルガノシロキサンなど を用いることが可能であり、その量はマトリックス榭脂 100重量部あたり好ましくは 2重 量部以下、より好ましくは 1重量部以下、さらには 0. 6重量部以下、好ましくは 0. 1重 量部以上の範囲で用いると滴下が問題となる場合その防止効果が得られて好ましい
[0143] 本発明の榭脂組成物の成形法としては、本発明のポリオルガノシロキサン系共重 合体と熱可塑性榭脂から得られる場合は通常の熱可塑性榭脂組成物の成形に用い られる成形法、すなわち、射出成形法、押出成形法、ブロー成形法、カレンダー成形 法、インフレーション成形法、回転成形法などを適用することができる。また熱硬化性 榭脂とから得られる場合には、型などに本発明の難燃性榭脂組成物を導入した後加 熱などにより硬化させる方法などを適用することができる。エラストマ一とから得られる 場合には、例えば、スラッシュ成形、射出成形や熱プレス成形といった成形方法で、 成形目的に応じた形状に成形され、必要に応じて加硫されて成形品となる。
[0144] 本発明の榭脂組成物カゝら得られる成形品の用途としては、特に限定されないが、た とえば、デスクトップ型コンピューター ·ノート型コンピューター '液晶ディスプレイ ·プラ ズマディスプレイ ·プロジェクタ^ ~ ·プロジェクシヨンテレビ · PDA'プリンタ^ ~ ·コピー機 'ファックス'(携帯型)オーディオ機器'(携帯型)ビデオ機器'(携帯)電話機'照明機 器 ·ゲーム機 ·デジタルビデオカメラ ·デジタルカメラ ·ビデオレコーダ一'ハードデイス クビデオレコーダー · DVDレコーダー ·時計などオフィス製品 ·家電製品、自動車用 などのバッテリー.キャパシタの部品、 LED映像表示装置'電源ボックス内の表示素 材 ·電話ジャック ·端子台カバー ·コイルボビンなどの電子 ·電機部品、封止剤などの 電気'電子材料、シール材、ガラスの振動防止材、ヒータファン'ノヽンドル'防振材な どの自動車部材など、耐衝撃性や難燃性、耐寒性などが必要となる用途があげられ る。
[0145] 得られた成形品は、特に低温における耐衝撃性に優れ、難燃性に優れたものとな る。
実施例
[0146] 以下では、本発明をより具体的に表す実施例を説明するが、本発明はこれらのみ に限定されない。なお、以下における測定および試験はつぎのように行った。
[0147] [重合転化率]
得られたラテックスの一部を採取 '精秤し、 130°Cの熱風乾燥器中で 1時間乾燥後 の固形分量を精秤することでラテックス中の固形成分比率を求め、(仕込み原料総重 量 X固形成分比率 単量体以外の原料総重量) Z仕込み単量体重量 X 100 (%) で算出した。なお、連鎖移動剤は仕込み単量体として取り扱った。
[0148] [体積平均粒子径]
シードポリマー、ポリオルガノシロキサン粒子およびグラフト共重合体の体積平均粒 子径をラテックスの状態で測定した。測定装置として、 日機装株式会社製の MICRO TRAC UPA150を用いて体積平均粒子径( μ m)を測定した。
[0149] [グラフト率]
本発明のグラフト共重合体約 2gを精秤したのち、約 100gの 2—ブタノンを抽出溶 媒として 12時間その中に浸漬した。超遠心分離機によりゲル分を沈降させて上澄み とゲル分を分離した。回収されたゲル分に対し 2—ブタノンの追加と超遠心分離操作 をさらに 2回繰り返して行なった。超遠心分離は 1回あたり 30, OOOrpm' l時間の条 件で実施した。回収されたゲル分を乾燥させ、重量を精秤した。ゲル分含有率を下 記 (式 1)に従って求めた。
ゲル分含有率 (%) =ゲル分残渣重量 Zグラフト共重合体重量, · ·(式 1)
次に先の 2—ブタノン可溶成分の上澄みすベてをあわせて溶液が約 20gになるま で濃縮し、これを 300mlのメタノール中に滴下してメタノール不溶の成分 (フリーポリ 一マー)を再沈殿した。フリーポリマーを回収'乾燥して重量を精秤し、フリーポリマー 含有率を下記 (式 2)に従って求めた。
フリーポリマー含有率(%) =フリーポリマー重量 Zグラフト共重合体重量' · ·(式 2) 表 2に基づいて下記 (式 3)を求め、ゲル分含有率、フリーポリマー含有率、シロキサ ン使用率を用いて下記 (式 4)としてグラフト率を求めた。 シロキサン使用率(%) =ポリオルガノシロキサン成分のみの原料重量 zグラフト共重 合体原料総重量 · · ·(式 3)
グラフト率(%) =ゲル分含有率 Z ( (ゲル分含有率 +フリーポリマー含有率) Xシロキ サン使用率) · · ·(式 4)
[0150] [還元粘度]
上記と同様に分別してフリーポリマーを得た。これを 0. 2gZlOOcm3のアセトン溶 液とし、 30°Cで還元粘度を測定した。
[0151] [重量平均分子量]
上記と同様に分別してフリーポリマーを得た。これを約 5mgZ3mlのクロ口ホルム溶 液とし、ゲル浸透クロマトグラフィー(GPC)分析することにより重量平均分子量 (Mw) を決定した。 GPC分析においては Waters社製 GPCシステムを使用し、カラムはポリ スチレンゲルカラム Shodex K— 806および K805 (昭和電工 (株)製)を用い、クロ 口ホルムを溶出液とし、ポリスチレン換算で解析した。
[0152] [耐衝撃性]
ASTM D— 256に準じて、アイゾット試験により評価した。
[0153] [難燃性]
UL94 V試験に準じて行い、燃焼総秒数で表した。
[0154] [外観]
燃焼試験用成形体の着色性を目視で観察した。白色のものを着色「無」とし、褐色 に着色しているものを「有」とした。
[0155] (製造例 1) ポリブチルアタリレート系シードポリマー(SD— 1)の製造
撹拌機、還流冷却器、チッ素吹込口、単量体追加口、温度計を備えた 5口フラスコ に、水 400重量部および 15重量%ドデシルベンゼンスルホン酸ナトリウム水溶液 (花 王株式会社製、ネオべレックス G15)を 12重量部(固形分)を混合したのち 50°Cに昇 温し、液温が 50°Cに達した後、窒素置換を行った。その後ブチルアタリレート 10重量 部、 tードデシルメルカプタン 3重量部をカ卩えた。 30分後、パラメンタンノヽィドロバーオ キサイド 0. 01重量部(固形分)、ナトリウムホルムアルデヒドスルホキシレート(SFS) O . 3重量部、エチレンジァミン四酢酸ニナトリウム (EDTA) O. 01重量部、硫酸第一鉄 (FeSO · 7Η O) 0. 0025重量部を添カ卩し、 1時間攪拌した。
4 2
[0156] ブチルアタリレート 90重量部、 t—ドデシルメルカプタン 27重量部、および、ノ ラメン タンハイド口パーオキサイド 0. 09重量部(固形分)の混合液を 3時間かけて連続追カロ した。その後、 2時間の後重合を行い、体積平均粒子径が 0. 03 m、重合転化率が 90% (tードデシルメルカプタンをモノマー原料成分とみなした)のシードポリマー(S D- 1)を含むラテックスを得た。
[0157] (製造例 2, 3) ポリオルガノシロキサン粒子(S— 1、 2)の製造
表 1に示す組成でホモミキサーにより 7500rpmで 5分間撹拌してシロキサンエマル ジョンを調製した。別途、表 1に示した量の固形分に相当するシードポリマー(SD—1 )ラテックスを撹拌機、還流冷却器、窒素吹込口、単量体追加口、温度計を備えた 5 口フラスコに仕込んだ。このフラスコに先のシロキサンェマルジヨンを一括して添カロし た。窒素気流下、系を撹拌しながら 1時間かけて 35°C力も 80°Cに昇温し、次に 10重 量%ドデシルベンゼンスルホン酸(DBSA、花王株式会社製、商品名:ネオペレック ス GS)水溶液 1重量部(固形分)を添加した。 15時間反応させ、 25°Cに冷却して 20 時間放置後、系の pHを 3重量%炭酸水素ナトリウム水溶液で 6. 5にして重合を終了 し、ポリオルガノシロキサン粒子(S— l、 2)を含むラテックスを得た。重合転化率、ポリ オルガノシロキサン粒子のラテックスの体積平均粒子径を測定した結果を表 1に示す
[0158] (製造例 4) ポリオルガノシロキサン粒子(S— 3)の製造
表 1に示す組成でホモミキサーにより lOOOOrpmで 5分間撹拌後、高圧ホモジナイ ザ一に 500barの圧力下で 3回通過させてシロキサンェマルジヨンを調製した。このェ マルジヨンを速やかに撹拌機、還流冷却器、窒素吹込口、単量体追加口、温度計を 備えた 5口フラスコに一括して仕込んだ。系を撹拌しながら、 30°Cで 6時間反応させ た。その後、 23°Cに冷却して 20時間放置後、系の pHを 3重量%炭酸水素ナトリウム 水溶液で 6. 8にして重合を終了し、ポリオルガノシロキサン粒子(S— 3)を含むラテツ タスをえた。重合転化率、ポリオルガノシロキサン粒子のラテックスの体積平均粒子径 を測定した結果を表 1に示す。
[0159] [表 1] 表 i
Figure imgf000041_0001
SDBS: アルキルベンゼンスルホン酸ナトリゥム(アルキル基の平均鎖 長は 12)
DBSA : ドデシルベンゼンスルホン酸
D4 : ォクタメチルシクロテトラシロキサン
DHPDMS : 平均分子量 2000の末端ジヒドロキシポリジメチルシロキ サン
DSMA : γ—メタクリロイルォキシプロピルメチルジメトキシシラン
MPrDMS: メルカプトプロピルジメトキシメチルシラン
(実施例 1〜15) ポリオルガノシロキサン系グラフト共重合体(SG—1〜15) 撹拌機、還流冷却器、窒素吹込口、単量体追加口および温度計を備えた 5口フラ スコに、イオン交換水 240重量部 (オルガノシロキサン粒子を含むラテックスからの持 ち込み分を含む)、および製造例 2〜4で得たポリオルガノシロキサン粒子(S— 1〜3 )のラテックスを表 2に示す量 (ただし、表 2は固形分相当)仕込み、系を撹拌しながら 窒素気流下に表 2に示す温度まで昇温した。表 2に示す温度到達の 1時間後に、ナト リウムホルムアルデヒドスルホキシレート(SFS) O. 25重量部、エチレンジァミン 4酢酸 2ナトリウム (EDTA) O. 002重量部、硫酸第一鉄 0. 0005重量部を添カ卩したのち、 表 2に示す組成のグラフト単量体の混合物(MG— 1)を一括で追加し、 30分間撹拌 を続けた。
[0161] その後、さらにタメンノヽイド口パーオキサイドを 0. 04重量部添加して 30分間攪拌し た後、表 2に示す組成のグラフト単量体の混合物(MG— 2)を 20重量部 Z時間の追 加速度で滴下追加した。さらに追加成分のある場合には、追加終了後から 1時間の 後、表 2に示す組成のグラフト単量体の混合物(MG— 3)を 20重量部 Z時間の追カロ 速度で滴下追加した。 MG— 2あるいは MG— 3の追加終了後、さらに 2時間撹拌を 続け、さらにクメンハイド口パーオキサイド 0. 05重量部を添加してから 30分間攪拌を 続けることによってポリオルガノシロキサン系グラフト共重合体 (SG— 1〜 15)のラテツ タスを得た。グラフト成分すベての重合転化率、ラテックスの体積平均粒子径を測定 した結果を表 2に示す。なお、以下の表中の部は重量部を表す。
[0162] 得られたラテックスにイオン交換水を加えて固形分濃度 15重量%とした後、 2. 5重 量%塩ィ匕カルシウム水溶液を 4重量部(固形分)加えて凝固スラリーを得た。さらに水 を加えて固形分濃度 12重量%とした。得られた凝固スラリーを 95°Cまで加熱し、 95 °Cで 2分間保持した後、 50°Cまで冷却して脱水、榭脂量の 15倍の水で洗浄後、乾 燥させてポリオルガノシロキサン系グラフト共重合体の粉体を得た。グラフト率、還元 粘度、重量平均分子量を分析した結果を表 2に示す。
[0163] [表 2]
Figure imgf000043_0001
(比較例 1 6) ポリオルガノシロキサン系グラフト共重合体(SG'— 1 6) 表 3に示す原料'仕込量で、実施例 2 6 9と同様にしてポリオルガノシロキサン系 グラフト共重合体 (SG'— 1 6)を得た。グラフト成分すベての重合転化率、ラテック スの体積平均粒子径、グラフト率、還元粘度、重量平均分子量を分析した結果を表 3 に示す。 [0165] [表 3]
Figure imgf000044_0001
TAIC : トリアリルイソシァヌレート
TAC : トリァリルシアヌレート
A1MA: ァリノレメタクリレート
MMA : メチルメタクリレート
BA: ブチルアタリレート
CHP : クメンハイド口パーオキサイド
2EHTG : 2—ェチルへキシルチオグリコレート
[0166] (実施例 16 37、比較例 7 14) ポリカーボネート榭脂の難燃ィ匕
表 2又は表 3に示すポリオルガノシロキサン系グラフト共重合体の粉体 0または 3重 量部をポリテトラフルォロエチレン (ダイキン工業株式会社製、商品名:ポリフロン FA 500) 0. 4重量部、酸化防止剤(2, 4 ジメチルー 6—(1ーメチルペンタデシル) フエノールとォクタデシルー 3— (3, 5—ジ一 tert—ブチル 4—ヒドロキシフエ-ル) プロピオネートの混合物、チバスペシャルティケミカルズ製、商品名:ィルガノックス 1 141) 0または 0. 03重量部、表 4に示す量の硫黄含有有機金属塩 (アルキルべンゼ ンスルホン酸ナトリウム (アルキル基の平均鎖長は 12)、花王株式会社製、商品名:ネ オペレックス G— 15)とともにポリカーボネート榭脂 (帝人化成株式会社製、商品名: パンライト L1225WX) 100重量部に対して配合した。得られた配合物を 2軸押出機( 株式会社日本製鋼所製 TEX44SS)で 260°Cにて溶融混鍊し、ペレットを製造した 。得られたペレットを用い、シリンダー温度 280°Cに設定した株式会社ファナック (FA NUC)製の FAS100B射出成形機で 1Z20インチの難燃性評価用試験片および 1 Z8インチの耐衝撃性評価用試験片を作製した。得られた試験片を用いて前記評価 方法に従って評価した。成形体の耐衝撃性 (0°C)と難燃性の結果を表 4に併せて示 す。
[表 4]
表 4
Figure imgf000046_0001
PTFE : ポリテトラフルォロエチレン
SDBS: アルキルベンゼンスルホン酸ナトリウム(アルキル基の平均鎖長は 12)
[0168] 表 4に見るように、比較例に比べ、実施例の共重合体を用いた場合には難燃性、耐 衝撃性がともに優れることが分かる。
[0169] (実施例 38〜41、比較例 15〜17) ポリカーボネート ZABS榭脂の難燃ィ匕
表 5に示すポリオルガノシロキサン系グラフト共重合体、市販の耐衝撃性改良剤で ある MBS榭脂((株)カネ力製、商品名:カネエース B— 564)、市販のアクリル系耐衝 撃性改良剤((株)カネ力製、商品名:カネエース M— 580)の粉体 0または 5重量部 をポリテトラフルォロエチレン (ダイキン工業株式会社製、商品名:ポリフロン FA— 50 0) 0. 5重量部、市販の顔料 (東罐マテリアル 'テクノロジー (株)製、製品番号: 42— 120A) 1重量部、フエノール系酸ィ匕防止剤 (旭電ィ匕工業株式会社製、商品名: AO — 60)、リン系酸ィ匕防止剤 (旭電ィ匕工業株式会社製、商品名: HP— 10)とともにポリ カーボネート榭脂(出光興産株式会社製、商品名:タフロン A2200) 80重量部、 AB S榭脂(日本 A&L (株)、商品名:サンタック AT— 08) 20重量部に対して配合した。
[0170] 得られた配合物を 2軸押出機 (株式会社日本製鋼所製 TEX44SS)で 250°Cにて 溶融混鍊し、ペレットを製造した。得られたペレットを用いて、シリンダー温度 300°C に設定した株式会社ファナック (FANUC)製の FAS100B射出成形機で 1Z8イン チの難燃性評価用試験片および 1Z4インチの耐衝撃性評価用試験片を作製した。 得られた試験片を用いて前記評価方法に従って評価した。成形体の耐衝撃性( 3 0、 23°C)と難燃性、ならびに試験片の焼けによる着色の有無を目視した結果を表 5 に併せて示す。
[0171] [表 5]
表 5
Figure imgf000048_0001
PTFE:ポリテトラフルォロエチレン
[0172] 表 5に見るように、比較例に比べ、実施例の共重合体を用いた場合には難燃性、耐 衝撃性、成形体の外観がともに優れることが分かる。
[0173] (実施例 42〜47、比較例 18〜19) ポリカーボネート Zポリエステル榭脂の難燃ィ匕 表 6に示すポリオルガノシロキサン系グラフト共重合体の粉体 0または 3重量部をポ リテトラフルォロエチレン (ダイキン工業株式会社製、商品名:ポリフロン FA— 500) 0 . 5重量部とともにポリカーボネート榭脂(出光興産株式会社製、商品名:タフロン A2 200) 80重量部、ポリエチレンテレフタレート榭脂(リサイクル再生品、(株)カネ力製、 社内品)またはポリブチレンテレフタレート榭脂(三菱エンジニアリングプラスチックス 株式会社製、商品名:ノバデュラン 5010R5) 20重量部に対して配合した。得られた 配合物を 2軸押出機 (株式会社日本製鋼所製 TEX44SS)で 250°Cにて溶融混鍊 し、ペレットを製造した。
[0174] 得られたペレットをシリンダー温度 300°Cに設定した株式会社ファナック (FANUC )製の FAS100B射出成形機で 1Z16インチの難燃性評価用試験片および 1Z4ィ ンチの耐衝撃性評価用試験片を作製した。得られた試験片を用いて前記評価方法 に従って評価した。成形体の耐衝撃性と難燃性を評価した結果を表 6に併せて示す
[0175] [表 6]
表 6
Figure imgf000050_0001
[0176] 表 6に見るように、比較例に比べ、実施例の共重合体を用いた場合には難燃性、耐 衝撃性がともに優れることが分かる。
[0177] (実施例 48 52、比較例 20 24) ポリカーボネート榭脂の難燃ィ匕
実施例 28のアルキルベンゼンスルホン酸ナトリウムに代えてベンゼンスルホン酸ナ トリウム (東京化成工業株式会社製、試薬グレード)、 P—トルエンスルホン酸ナトリウム (東京化成工業株式会社製、試薬グレード)、キシレンスルホン酸ナトリウム (ティカ株 式会社製、商品名:ティカトツタス N1140)、クメンスルホン酸ナトリウム (ティカ株式会 社製、商品名:ティカトツタス N5040)を表 7に示す量用いた以外は実施例 28と同様 に評価を行った。成形体の耐衝撃性と難燃性を評価した結果を表 7に併せて示す。
[表 7]
Figure imgf000051_0001
PTFE : ポリテトラフノレォロェチレン
SDBS : アルキルベンゼンスルホン酸ナトリウム(アルキノレ基の平均鎖長は 12)
SBS : ベンゼンスルホン酸ナトリウム
STS : p—トルエンスルホン酸ナトリウム
SXS ; キシレンスノレホン酸ナトリウム
SCS : クメンスルホン酸ナトリウム [0179] 表 7に見るように、比較例に比べ、実施例の共重合体を用いた場合には難燃性、耐 衝撃性がともに優れることが分かる。
産業上の利用可能性
[0180] 本発明の共重合体を熱可塑性榭脂などの榭脂に配合することにより、非ハロゲン' 非リン系であって、難燃性を低下させず、もしくは向上させながら、低温などでの耐衝 撃性に優れた榭脂組成物を提供することができる。

Claims

請求の範囲
[1] ポリオルガノシロキサン (A)部位、分子内に 2以上のラジカル重合性基を有する窒 素原子含有多官能性単量体 (B)由来の単位を少なくとも有する重合体 (C)部位、お よびエチレン性不飽和単量体 (D)由来のガラス転移温度が 40°C以上である重合体 (E)部位を含んで構成されるポリオルガノシロキサン系グラフト共重合体。
[2] ポリオルガノシロキサン (A)部位の含有量が、グラフト共重合体を基準として 65重 量%以上であることを特徴とする、請求の範囲第 1項記載のグラフト共重合体。
[3] 窒素原子含有単量体 (B)力 シァヌル酸誘導体および Zまたはイソシァヌル酸誘 導体であることを特徴とする、請求の範囲第 1項または第 2項記載のグラフト共重合 体。
[4] ポリオルガノシロキサン (A)の存在下に、窒素原子含有多官能性単量体 (B)を含 む単量体を 1段以上重合することにより得られることを特徴とする、請求の範囲第 1項 〜第 3項のいずれかに記載のグラフト共重合体。
[5] ポリオルガノシロキサン (A)の存在下に、窒素原子含有多官能性単量体 (B)を含 む単量体を 1段以上重合し、さらにエチレン性不飽和単量体 (D)を 1段以上重合す ることにより得られることを特徴とする、請求の範囲第 1項〜第 4項のいずれかに記載 のグラフト共重合体。
[6] グラフト率が 1. 001-1. 280であることを特徴とする、請求の範囲第 1項〜第 5項 のいずれかに記載のグラフト共重合体。
[7] グラフト共重合体に含まれており、 2—ブタノンに可溶かつメタノールに不溶である 成分を、 30°C、 0. 2gZlOOcm3アセトン溶液の条件で測定した還元粘度が 0. 01〜0
. 8dlZgであることを特徴とする、請求の範囲第 1項〜第 6項のいずれかに記載のグ ラフト共重合体。
[8] グラフト共重合体に含まれており、 2—ブタノンに可溶かつメタノールに不溶である 成分の GPCを用いて求めた重量平均分子量が 10, 000以上、 1, 000, 000以下で あることを特徴とする、請求の範囲第 1項〜第 7項のいずれかに記載のグラフト共重 合体。
[9] 請求項 1乃至 8のいずれかに記載のグラフト共重合体を含むラテックスを塩凝固す る工程を伴うことを特徴とする、グラフト共重合体の製造方法。
[10] グラフト共重合体を含むラテックスを塩凝固するよりも後の工程で、さらにグラフト共 重合体を洗浄する工程を伴うことを特徴とする、請求の範囲第 9項記載のグラフト共 重合体の製造方法。
[11] グラフト共重合体を含むラテックスを塩凝固するよりも後の工程で、さらにグラフト共 重合体を含む分散液を稀釈する工程を伴うことを特徴とする請求の範囲第 9項記載 のグラフト共重合体の製造方法。
[12] 請求の範囲第 1項〜第 8項のいずれかに記載のグラフト共重合体を含むラテックス を噴霧乾燥した後に、さらにグラフト共重合体を洗浄する工程および Zまたは 2価以 上の金属の塩を添加する工程を伴うことを特徴とする、グラフト共重合体の製造方法
[13] 請求の範囲第 1項〜第 8項のいずれかに記載のグラフト共重合体、並びに熱可塑 性榭脂、熱硬化性榭脂及びエラストマ一力 なる群より選択される少なくとも 1種を含 有することを特徴とする、グラフト共重合体含有榭脂組成物。
[14] 熱可塑性榭脂が、ポリカーボネート榭脂、ポリエステル榭脂、ポリエステルカーボネ ート榭脂、ポリフエ-レンエーテル榭脂、ポリフエ-レンスルフイド榭脂、ポリスルフォン 榭脂、ポリエーテルスルフォン榭脂、ポリアリーレン榭脂、ポリアミド榭脂、ポリエーテ ルイミド榭脂、ポリアセタール榭脂、ポリビュルァセタール榭脂、ポリケトン樹脂、ポリ エーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリールケトン樹脂、ポリ エーテル-トリル榭脂、液晶榭脂、ポリべンズイミダゾール榭脂、ポリパラバン酸榭脂 、芳香族ァルケ-ル化合物、メタクリル酸エステル、アクリル酸エステルおよびシアン 化ビ-ルイ匕合物力 なる群より選ばれる 1種以上のビュル単量体を重合若しくは共重 合させて得られるビニル系重合体若しくは共重合体榭脂、ジェン一芳香族ァルケ- ルイ匕合物共重合体榭脂、シアンィ匕ビ-ルージェン一芳香族ァルケ二ルイ匕合物共重 合体榭脂、芳香族ァルケ-ル化合物一ジェン一シアンィ匕ビュル N フエ-ルマレ イミド共重合体榭脂、シアン化ビュル (エチレン ジェン プロピレン(EPDM) )— 芳香族アルケニル化合物共重合体榭脂、ポリオレフイン、塩化ビニル榭脂、塩素化 塩ィ匕ビュル榭脂から選択される少なくとも 1種であることを特徴とする、請求の範囲第 13項記載のグラフト共重合体含有榭脂組成物。
[15] 熱硬化性榭脂がフエノール榭脂、エポキシ榭脂、尿素樹脂、メラミン榭脂、ポリイミド 榭脂、ポリアミドイミド榭脂、熱硬化性ポリエステル榭脂、アルキド榭脂、シリコーン榭 脂、ウレタン榭脂、ポリビュルエステル榭脂、ポリフタル酸ジァリル榭脂、ビスマレイミド トリアジン榭脂、フラン榭脂、キシレン榭脂、グアナミン榭脂、マレイン榭脂、ジシク 口ペンタジェン榭脂から選択される少なくとも 1種であることを特徴とする、請求の範 囲第 13項記載のグラフト共重合体含有榭脂組成物。
[16] エラストマ一が天然ゴム、合成ゴム力も選択される少なくとも 1種であることを特徴と する、請求の範囲第 13項記載のグラフト共重合体含有榭脂組成物。
[17] 芳香族ポリカーボネートを含むことを特徴とする、請求の範囲第 14項記載のグラフ ト共重合体含有榭脂組成物。
[18] さらに硫黄含有有機金属塩を含むことを特徴とする、請求の範囲第 17項記載のグ ラフト共重合体含有榭脂組成物。
[19] さらに酸ィ匕防止剤を含むことを特徴とする、請求の範囲第 13項〜第 18項のいずれ 力に記載のグラフト共重合体含有榭脂組成物。
PCT/JP2005/023477 2004-12-28 2005-12-21 グラフト共重合体およびその製造方法、並びに該グラフト共重合体含有樹脂組成物 WO2006070664A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP05820122A EP1832613B9 (en) 2004-12-28 2005-12-21 Graft copolymer, method for producing same and resin composition containing such graft copolymer
AT05820122T ATE545666T1 (de) 2004-12-28 2005-12-21 Pfropfcopolymer, herstellungsverfahren dafür und harzzusammensetzung, die ein derartiges pfropfcopolymer enthält
US11/793,628 US20080085975A1 (en) 2004-12-28 2005-12-21 Graft Copolymer, Method For Producing The Same And Resin Composition Containing The Graft Copolymer
JP2006550707A JP5225584B2 (ja) 2004-12-28 2005-12-21 グラフト共重合体およびその製造方法、並びに該グラフト共重合体含有樹脂組成物
KR1020077016498A KR101284971B1 (ko) 2004-12-28 2005-12-21 그래프트 공중합체 및 그 제조 방법, 그리고 그 그래프트공중합체 함유 수지 조성물
CN2005800451880A CN101090919B (zh) 2004-12-28 2005-12-21 接枝共聚物及其制造方法以及含有该接枝共聚物的树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004380804 2004-12-28
JP2004-380804 2004-12-28

Publications (1)

Publication Number Publication Date
WO2006070664A1 true WO2006070664A1 (ja) 2006-07-06

Family

ID=36614783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023477 WO2006070664A1 (ja) 2004-12-28 2005-12-21 グラフト共重合体およびその製造方法、並びに該グラフト共重合体含有樹脂組成物

Country Status (8)

Country Link
US (1) US20080085975A1 (ja)
EP (1) EP1832613B9 (ja)
JP (1) JP5225584B2 (ja)
KR (1) KR101284971B1 (ja)
CN (1) CN101090919B (ja)
AT (1) ATE545666T1 (ja)
TW (1) TW200631968A (ja)
WO (1) WO2006070664A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291104A (ja) * 2007-05-24 2008-12-04 Teijin Chem Ltd 摺動性樹脂組成物及びこれから形成された成形品
WO2009034966A1 (ja) 2007-09-11 2009-03-19 Kaneka Corporation 液状樹脂組成物、および該液状樹脂組成物を用いた硬化物
EP2149590A1 (en) * 2007-05-24 2010-02-03 Teijin Chemicals, Ltd. Sliding resin composition and molded article thereof
JP2011063706A (ja) * 2009-09-17 2011-03-31 Mitsubishi Rayon Co Ltd グラフト共重合体及びその製造方法、難燃剤、熱可塑性樹脂組成物、並びに成形体
JP2013112771A (ja) * 2011-11-30 2013-06-10 Toyobo Co Ltd 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体
JP2014074187A (ja) * 2014-01-31 2014-04-24 Mitsubishi Rayon Co Ltd グラフト共重合体及びその製造方法、難燃剤、熱可塑性樹脂組成物、並びに成形体
WO2014196607A1 (ja) 2013-06-07 2014-12-11 株式会社カネカ 硬化性樹脂組成物、それを用いてなる構造接着剤、コーティング材又は繊維強化複合材料、それを発泡してなる発泡体、それを硬化してなる積層体、及びそれらの硬化物
JP2018009197A (ja) * 2013-03-07 2018-01-18 テクノポリマー株式会社 熱可塑性樹脂組成物及び成形品
WO2019189621A1 (ja) 2018-03-30 2019-10-03 株式会社カネカ 熱硬化性マトリクス樹脂に対する分散性が改善された粉粒体
WO2019208569A1 (ja) 2018-04-27 2019-10-31 株式会社カネカ 作業性に優れるポリマー微粒子含有硬化性樹脂組成物を用いる接着方法、及び、該接着方法を用いて得られる積層体
WO2020138263A1 (ja) 2018-12-27 2020-07-02 株式会社カネカ 樹脂組成物およびその利用
WO2020196919A1 (ja) 2019-03-28 2020-10-01 株式会社カネカ 粉粒体およびその利用
WO2020196921A1 (ja) 2019-03-28 2020-10-01 株式会社カネカ 樹脂組成物の製造方法および樹脂組成物
US10920073B2 (en) 2015-12-11 2021-02-16 Kaneka Corporation Polyurethane curable composition containing polymer fine particles excellent in mechanical strength
WO2021060486A1 (ja) 2019-09-27 2021-04-01 株式会社カネカ 接着剤、および接着剤の製造方法
WO2021060482A1 (ja) 2019-09-27 2021-04-01 株式会社カネカ 粉粒体および粉粒体の製造方法
WO2022071406A1 (ja) 2020-09-30 2022-04-07 株式会社カネカ ラテックスおよび樹脂組成物、並びにそれらの製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108450A1 (ja) * 2004-05-12 2005-11-17 Kaneka Corporation 共重合体、グラフト共重合体、グラフト共重合体粒子、難燃剤、および樹脂組成物
NZ592521A (en) * 2008-11-11 2014-02-28 Akzo Nobel Coatings Int Bv Intumescent coating composition
JP5361092B2 (ja) * 2011-09-16 2013-12-04 リンテック株式会社 ダイシングシート用基材フィルムおよびダイシングシート
CN104341888A (zh) * 2013-07-29 2015-02-11 董思伟 一种具有互穿网络型结构的有机硅-聚乙烯醇缩丁醛涂料(简称s-pvb)及制备方法
EP3375800B1 (en) 2013-08-13 2021-07-07 Mitsubishi Chemical Corporation Polyorganosiloxane-containing graft copolymer, resin composition, molded article, sliding-properties improvement agent, and sliding member
US10556980B2 (en) * 2014-03-03 2020-02-11 University Of South Carolina Poly alkyl (meth)acrylates grafted nanoparticles and their methods of manufacture and use
US11952486B2 (en) * 2017-04-25 2024-04-09 Avient Corporation Thermoplastic elastomer compounds exhibiting retained clarity and improved surface structure
EP3615610B1 (en) * 2017-04-25 2022-06-01 Avient Corporation Thermoplastic elastomer compounds exhibiting improved stain resistance
CN109666163B (zh) * 2017-10-17 2023-05-12 厦门逍扬运动科技有限公司 一种杂化交联动态聚合物及其应用
KR102576414B1 (ko) * 2017-11-27 2023-09-08 미쯔비시 케미컬 주식회사 고무 함유 그래프트 중합체, 고무 함유 그래프트 중합체 함유 수지 조성물 및 그의 성형체
CN108561636A (zh) * 2018-01-31 2018-09-21 浙江伟星新型建材股份有限公司 一种耐磨复合管及其制备方法
JP7155777B2 (ja) * 2018-09-12 2022-10-19 三菱ケミカル株式会社 ポリオルガノシロキサン含有グラフト共重合体、熱可塑性樹脂組成物及び成形体
KR102311951B1 (ko) 2018-12-21 2021-10-14 주식회사 엘지화학 열가소성 수지 조성물
CN111635531B (zh) * 2020-05-28 2022-03-01 珠海冠宇电池股份有限公司 一种聚烯烃接枝苯并咪唑类聚合物质子交换膜及其制备方法与应用
CN114106340B (zh) * 2021-12-28 2023-07-21 力美达新材料科技研究开发(广东)有限公司 一种有机硅杂化三聚氰胺氰尿酸盐及其制备方法和应用
CN114717464B (zh) * 2022-02-25 2023-04-18 温州市海格阀门有限公司 一种耐热铸造不锈钢及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088040A (ja) 1983-10-21 1985-05-17 Mitsubishi Rayon Co Ltd ポリオルガノシロキサンラテツクスの製法
JPS63202630A (ja) 1987-02-14 1988-08-22 バイエル・アクチエンゲゼルシヤフト 微粒状多相重合体組成物およびその製造方法
JPS63202631A (ja) 1987-02-14 1988-08-22 バイエル・アクチエンゲゼルシヤフト 微粒状多相重合体組成物およびその製造方法
JPH04258636A (ja) 1991-02-12 1992-09-14 Japan Synthetic Rubber Co Ltd ポリシロキサン複合重合体粒子の製造方法
JPH10218951A (ja) * 1997-02-04 1998-08-18 Kanegafuchi Chem Ind Co Ltd 架橋樹脂粒子の製法およびそれからえられた架橋樹脂粒子、ならびにそれを含有してなる熱可塑性樹脂組成物
JPH10310616A (ja) * 1997-05-12 1998-11-24 Kanegafuchi Chem Ind Co Ltd シリコーン変性アクリルゴム粒子、シリコーン変性アクリルゴム系グラフト共重合体粒子および熱可塑性樹脂組成物
JPH11189607A (ja) * 1997-12-26 1999-07-13 Kanegafuchi Chem Ind Co Ltd 架橋樹脂粒子の製法
JP2003238639A (ja) 2002-02-15 2003-08-27 Kanegafuchi Chem Ind Co Ltd グラフト共重合体及びそれを含有する難燃性樹脂組成物
WO2003091342A1 (fr) * 2002-04-26 2003-11-06 Kaneka Corporation Composition de resine thermoplastique ignifuge
WO2005080460A1 (ja) * 2004-02-24 2005-09-01 Kaneka Corporation グラフト共重合体、該共重合体からなる難燃剤及び該難燃剤を配合した樹脂組成物
WO2005108450A1 (ja) * 2004-05-12 2005-11-17 Kaneka Corporation 共重合体、グラフト共重合体、グラフト共重合体粒子、難燃剤、および樹脂組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3505524A1 (de) * 1984-03-28 1985-10-10 Hoechst Ag, 6230 Frankfurt Schlagzaeh modifiziertes polyoxymethylen und daraus hergestellte formkoerper
KR100851266B1 (ko) * 2001-07-05 2008-08-08 카네카 코포레이션 난연성 열가소성 수지 조성물
US20040162399A1 (en) * 2003-02-14 2004-08-19 Reddy Poreddy Narsi Silicone-acrylate impact modifier
EP2399950B1 (en) * 2004-12-31 2013-04-17 Cheil Industries Inc. Silicone impact modifier with high refractive index and method for preparing the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088040A (ja) 1983-10-21 1985-05-17 Mitsubishi Rayon Co Ltd ポリオルガノシロキサンラテツクスの製法
JPS63202630A (ja) 1987-02-14 1988-08-22 バイエル・アクチエンゲゼルシヤフト 微粒状多相重合体組成物およびその製造方法
JPS63202631A (ja) 1987-02-14 1988-08-22 バイエル・アクチエンゲゼルシヤフト 微粒状多相重合体組成物およびその製造方法
JPH04258636A (ja) 1991-02-12 1992-09-14 Japan Synthetic Rubber Co Ltd ポリシロキサン複合重合体粒子の製造方法
JPH10218951A (ja) * 1997-02-04 1998-08-18 Kanegafuchi Chem Ind Co Ltd 架橋樹脂粒子の製法およびそれからえられた架橋樹脂粒子、ならびにそれを含有してなる熱可塑性樹脂組成物
JPH10310616A (ja) * 1997-05-12 1998-11-24 Kanegafuchi Chem Ind Co Ltd シリコーン変性アクリルゴム粒子、シリコーン変性アクリルゴム系グラフト共重合体粒子および熱可塑性樹脂組成物
JPH11189607A (ja) * 1997-12-26 1999-07-13 Kanegafuchi Chem Ind Co Ltd 架橋樹脂粒子の製法
JP2003238639A (ja) 2002-02-15 2003-08-27 Kanegafuchi Chem Ind Co Ltd グラフト共重合体及びそれを含有する難燃性樹脂組成物
WO2003091342A1 (fr) * 2002-04-26 2003-11-06 Kaneka Corporation Composition de resine thermoplastique ignifuge
EP1505123A1 (en) 2002-04-26 2005-02-09 Kaneka Corporation Flame-retardant thermoplastic resin composition
WO2005080460A1 (ja) * 2004-02-24 2005-09-01 Kaneka Corporation グラフト共重合体、該共重合体からなる難燃剤及び該難燃剤を配合した樹脂組成物
WO2005108450A1 (ja) * 2004-05-12 2005-11-17 Kaneka Corporation 共重合体、グラフト共重合体、グラフト共重合体粒子、難燃剤、および樹脂組成物

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101641411A (zh) * 2007-05-24 2010-02-03 帝人化成株式会社 滑动性树脂组合物及其成型品
EP2149590A1 (en) * 2007-05-24 2010-02-03 Teijin Chemicals, Ltd. Sliding resin composition and molded article thereof
EP2149590A4 (en) * 2007-05-24 2012-02-22 Teijin Chemicals Ltd SLIP RESIN COMPOSITION AND MOLDED ARTICLE IN THIS RESIN
US8697796B2 (en) 2007-05-24 2014-04-15 Teijin Chemicals, Ltd. Slidable resin composition and molded article thereof
JP2008291104A (ja) * 2007-05-24 2008-12-04 Teijin Chem Ltd 摺動性樹脂組成物及びこれから形成された成形品
WO2009034966A1 (ja) 2007-09-11 2009-03-19 Kaneka Corporation 液状樹脂組成物、および該液状樹脂組成物を用いた硬化物
US8742014B2 (en) 2007-09-11 2014-06-03 Kaneka Corporation Liquid resin composition and cured product using the liquid resin composition
JP2011063706A (ja) * 2009-09-17 2011-03-31 Mitsubishi Rayon Co Ltd グラフト共重合体及びその製造方法、難燃剤、熱可塑性樹脂組成物、並びに成形体
JP2013112771A (ja) * 2011-11-30 2013-06-10 Toyobo Co Ltd 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体
JP2018009197A (ja) * 2013-03-07 2018-01-18 テクノポリマー株式会社 熱可塑性樹脂組成物及び成形品
US10100195B2 (en) 2013-06-07 2018-10-16 Kaneka Corporation Curable resin composition, structural adhesive, coating material or fiber reinforced composite material using the same, foam body using the same, laminate using the same, and cured material thereof
WO2014196607A1 (ja) 2013-06-07 2014-12-11 株式会社カネカ 硬化性樹脂組成物、それを用いてなる構造接着剤、コーティング材又は繊維強化複合材料、それを発泡してなる発泡体、それを硬化してなる積層体、及びそれらの硬化物
EP3604371A1 (en) 2013-06-07 2020-02-05 Kaneka Corporation Curable resin composition, structural adhesive, coating material or fiber reinforced composite material using the same, foam body using the same, laminate using the same, and cured material thereof
US10669419B2 (en) 2013-06-07 2020-06-02 Kaneka Corporation Curable resin composition, structural adhesive, coating material or fiber reinforced composite material using the same, foam body using the same, laminate using the same, and cured material thereof
JP2014074187A (ja) * 2014-01-31 2014-04-24 Mitsubishi Rayon Co Ltd グラフト共重合体及びその製造方法、難燃剤、熱可塑性樹脂組成物、並びに成形体
US10920073B2 (en) 2015-12-11 2021-02-16 Kaneka Corporation Polyurethane curable composition containing polymer fine particles excellent in mechanical strength
WO2019189621A1 (ja) 2018-03-30 2019-10-03 株式会社カネカ 熱硬化性マトリクス樹脂に対する分散性が改善された粉粒体
WO2019208569A1 (ja) 2018-04-27 2019-10-31 株式会社カネカ 作業性に優れるポリマー微粒子含有硬化性樹脂組成物を用いる接着方法、及び、該接着方法を用いて得られる積層体
WO2020138263A1 (ja) 2018-12-27 2020-07-02 株式会社カネカ 樹脂組成物およびその利用
WO2020196919A1 (ja) 2019-03-28 2020-10-01 株式会社カネカ 粉粒体およびその利用
WO2020196921A1 (ja) 2019-03-28 2020-10-01 株式会社カネカ 樹脂組成物の製造方法および樹脂組成物
WO2021060486A1 (ja) 2019-09-27 2021-04-01 株式会社カネカ 接着剤、および接着剤の製造方法
WO2021060482A1 (ja) 2019-09-27 2021-04-01 株式会社カネカ 粉粒体および粉粒体の製造方法
WO2022071406A1 (ja) 2020-09-30 2022-04-07 株式会社カネカ ラテックスおよび樹脂組成物、並びにそれらの製造方法

Also Published As

Publication number Publication date
KR101284971B1 (ko) 2013-07-10
CN101090919A (zh) 2007-12-19
EP1832613A4 (en) 2009-09-02
EP1832613A1 (en) 2007-09-12
EP1832613B9 (en) 2012-08-29
CN101090919B (zh) 2010-12-01
TW200631968A (en) 2006-09-16
ATE545666T1 (de) 2012-03-15
JP5225584B2 (ja) 2013-07-03
KR20070093116A (ko) 2007-09-17
US20080085975A1 (en) 2008-04-10
EP1832613B1 (en) 2012-02-15
JPWO2006070664A1 (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
WO2006070664A1 (ja) グラフト共重合体およびその製造方法、並びに該グラフト共重合体含有樹脂組成物
KR101824832B1 (ko) 폴리오르가노실록산 함유 그래프트 공중합체, 수지 조성물 및 성형체
WO2013162080A2 (ja) ポリオルガノシロキサン含有グラフト共重合体、樹脂組成物、成形体、摺動性改良剤及び摺動部材
JP5214143B2 (ja) 共重合体、グラフト共重合体、グラフト共重合体粒子、難燃剤、および樹脂組成物
JPWO2008026575A1 (ja) ポリエステル含有樹脂組成物
KR101677246B1 (ko) 강화 열가소성 수지 조성물 및 그 성형품
JP2010222556A (ja) 熱可塑性樹脂組成物
EP2660256B1 (en) Graft copolymer and production method therefor, resin composition, and molded article
JP2012126841A (ja) 強化熱可塑性樹脂組成物および成形品
WO2007132657A1 (ja) ポリオルガノシロキサン含有グラフト共重合体、それからなる難燃剤、及びそれを含有する樹脂組成物
JP2010196009A (ja) 樹脂組成物、その成型体、及び携帯電話筐体
WO2005087866A1 (ja) オルガノポリシロキサン含有グラフト共重合体組成物
JP2009227745A (ja) ポリオルガノシロキサン含有グラフト共重合体、及び難燃性樹脂組成物
JP5805949B2 (ja) ポリオルガノシロキサン含有グラフト共重合体からなる流動性改良剤、及びこれを用いた樹脂の流動性を高める方法
JP5473496B2 (ja) グラフト共重合体及びその製造方法、熱可塑性樹脂組成物、並びに成形品
JP2011111468A (ja) 樹脂組成物、その成型体、及び容器
JP5578356B2 (ja) 難燃性樹脂組成物及び成形品
JP6365116B2 (ja) 熱可塑性樹脂組成物及びその成形体。
JP2005314587A (ja) グラフト共重合体、該共重合体からなる難燃剤及び該難燃剤を配合してなる樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005820122

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006550707

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11793628

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580045188.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077016498

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005820122

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11793628

Country of ref document: US